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A B S T R A C T

Scientists can facilitate data intensive applications to study and understand
the behavior of a complex system. In a data intensive application, a scien-
tific model facilitates raw data products, collected from various sources, to
produce new data products. Based on the generated output, scientists used
to make decisions that could potentially affect the system which is being
studied. Therefore, it is important to have the ability of tracing an output
data product back to its source values if that particular output seems to
have an unexpected value.

Data provenance helps scientists to investigate the origin of an unex-
pected value. Provenance could be also used to validate a scientific model.
Existing provenance-aware systems have their own set of constructs to de-
sign the workflow of a scientific model for extracting workflow provenance.
Using these systems requires extensive training for scientists. Preparing
workflow provenance manually is also not a feasible option since it is
a time consuming task. Moreover, the existing systems document prove-
nance records explicitly to build a fine-grained provenance trace which is
used for tracing back to source data. Since most of the scientific computa-
tions handle massive amounts of data, the storage overhead to maintain
provenance data becomes a major concern.

We address the aforesaid challenges by introducing a framework man-
aging both workflow and fine-grained data provenance in a generic and
cost-efficient way. The framework is capable of extracting workflow prove-
nance of a scientific model automatically at reduced effort and time. It
also infers fine-grained data provenance without explicit documentation
of provenance records. Therefore, the framework reduces the storage con-
sumption to maintain provenance data. We introduce a suite of inference-
based methods addressing different execution environments to make the
framework more generic in nature. Moreover, the framework has the self-
adaptability feature so that it can provide optimally accurate provenance
at minimal storage costs. Our evaluation based on two use cases shows
that the framework provides a generic, cost-efficient solution to scientists
who want to manage data provenance for their data intensive applications.
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S A M E N VAT T I N G

Wetenschappers gebruiken data intensieve toepassingen om het gedrag
van complexe systemen te modelleren zodat ze deze systemen kunnen
bestuderen en begrijpen. In een data intensieve toepassing wordt ruwe
data, verzameld uit verscheidene bronnen, omgezet naar afgeleide data.
Op basis van deze afgeleide data worden beslissingen genomen die het
gemodelleerde systeem beïnvloeden. Het is hiervoor belangrijk dat het
mogelijk is om de afgeleide data te herleiden naar zijn oorsprong, zeker
als er een onverwacht resultaat bij zit.

Data provenance helpt wetenschappers om de oorsprong van een dergelijk
onverwacht resultaat te vinden. Data provenance kan ook gebruikt worden
om een wetenschappelijk model te valideren. Bestaande provenance-aware
systemen hebben een eigen verzameling methoden om een workflow te
ontwerpen waarin de data provenance van een wetenschappelijk model bi-
jgehouden wordt. Het handmatig opzetten van een data provenance work-
flow is geen reële optie, omdat dit erg tijdrovend is. Daarnaast houden
de bestaande provenance-aware systemen een expliciete, gedetailleerde
provenance trace bij, welke gebruikt wordt voor het herleiden van de data.
Omdat er in wetenschappelijke berekeningen grote hoeveelheden data om-
gaan wordt de overhead van opgeslagen provenance data een belangrijke
kwestie.

We gaan in op de voorgaande kwesties, en introduceren een framework
voor het omgaan met zowel workflow en gedetaileerde data provenance
in een generieke en kosten-efficiënte wijze. Dit framework kan gebruikt
worden om de workflow provenance van een wetenschappelijk model au-
tomatisch af te leiden, wat zowel tijd als moeite bespaart. Het framework
is ook in staat om gedetailleerde provenance data af te leiden zonder daar-
voor expliciete opslag nodig te hebben. Hierdoor verlaagt het framework
de benodigde opslagruimte. We introduceren een geheel van inferentie-
gebaseerde methoden gericht op verschillende omgevingen om de gener-
ieke aard van het framework te versterken. De evaluatie is gebaseerd op
twee use cases, welke tonen dat het framework een generieke, kosten-

ix



efficiënte oplossing is voor wetenschappers die provenance data willen
bijhouden in data intensieve toepassingen.
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1
I N T R O D U C T I O N

S cientists from many domains such as physical, geological, environ-
mental, biological etc. facilitate data intensive applications to study and
better understand these complex systems [100]. Most of these applications
facilitate data fusion [78] which combines several sources of raw data to
produce new data products. The data collection might contain both in-situ
data collected from the field and data streams sent by sensors. Scientists
might also facilitate geospatial data, i.e., measurements or sensor readings
with time and space, from various sources. Scientists use this data, fitting
into their model that describes processes in the physical world and as a
consequence, scientists get the output, i.e., a data product, which is used to
facilitate either a process control application or a decision support system.
A new generation of information infrastructure, known as cyberinfrastruc-
ture, is being developed to support these data intensive applications [135].

The Swiss Experiment1 is an example of such type of cyberinfrastruc-
tures, providing a platform to enable real-time environmental experiments.
One of the experiments in the context of this platform is to study how
river restoration affects water quality. To perform this experiment, scien-
tists, first, design their scientific model which facilitates sensor readings
of electrical conductivity (input data products) in a known region of the
river to produce interpolated values of electrical conductivity (output data
products) over the same region. Afterward, scientists execute the model to
generate the result set. Based on this generated result, they could make a
decision to control a nearby drinking water well to prevent the drinking
water quality being compromised by a flood.

1 Available at http://www.swiss-experiment.ch/
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introduction

One of the requirements of this cyberinfrastructure is the ability to trace
the origin of an output data product. This could be useful in cases of the
generation of any imprecise or unexpected data product during the exe-
cution of a scientific data processing model. To investigate the origin of
the unexpected data, scientists need to debug their models used for actual
processing as well as to trace back values of the input data sources.

Furthermore, reproducibility of data products is another major require-
ment in the scientific domain. Reproducibility of data products refers to
the ability to produce the same data product using the same set of input
data and model parameters irrespective of the model execution time. It
allows scientists to validate their own model and to justify the decision
made based on the data products. Maintaining data provenance [20, 114],
also known as lineage [80], allows scientists to achieve these requirements
and thus, leading towards the development of the provenance-aware cy-
berinfrastructure.

1.1 data provenance

Provenance is defined in many different contexts. One of the earlier defini-
tions was given in the context of geographic information system (GIS). In
GIS, data provenance is known as lineage which explicates the relationship
among events and source data in generating the data product [80]. In the
context of database systems, data provenance provides the description of
how a data product is achieved through the transformation activities from
its input data [20]. In a scientific workflow, data provenance refers to the
derivation history of a data product starting from its origin [114]. In the
context of the geoscientific domain, geospatial data provenance is defined
as the processing history of a geospatial data product [135].

In all contexts, provenance can be defined at different levels of granu-
larity [19]. Fine-grained data provenance is defined at the value-level of
a data product which refers to the determination of how that data prod-
uct has been created and processed starting from its input values. It helps
scientists to trace the value of an output data product. Fine-grained data
provenance could be facilitated to have reproducible results as well. Coarse-
grained or workflow provenance is defined at the more higher level of
granularity. It captures association among different activities within the
model at design time. Workflow provenance can achieve reproducibility in
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1.2 goal of this thesis

a few cases where data is collected beforehand, i.e., offline data or data
streams arriving at a fixed rate without any late arrivals. In other cases
of data streams which have more time-related assumptions like variable
data arrival rate, workflow provenance itself cannot achieve reproducibil-
ity due to the creation of new data products and update of existing data
products during the model execution. However, based on the workflow
provenance of a model, we can infer fine-grained data provenance which
can significantly reduce storage overhead for provenance data. Therefore,
a framework integrating both workflow and fine-grained data provenance
will be proven beneficial to scientists using provenance data.

1.2 goal of this thesis

In this thesis, we aim to develop a framework managing both workflow
and fine-grained data provenance for data intensive scientific applications.
To accomplish such a framework, we identify three key design factors.
Firstly, the framework should be generic, i.e., applicable for any given
model. The biggest challenge to make the framework generic in nature
is to address different types of developing approach as, i.e., with or with-
out facilitating any specific tools, as well as to address different types of
coordination scheme within a model (e.g. data-flow or control-flow) [111].
Secondly, the framework should be cost-efficient, i.e., manage data prove-
nance with minimal user effort in terms of time and training as well as
at reduced storage costs. Maintaining provenance information by facilitat-
ing a particular platform might be time consuming because of training
sessions arranged for users to make them understand the basic constructs
of the platform used. Moreover, the explicit documentation of data prove-
nance incurs storage overhead because of storing the relationship between
input and output data products at each execution of the model for all the
associated processing steps including the intermediate ones. The storage
overhead might be further increased if a particular input data product con-
tributes to produce several output data products. Therefore, the framework
should manage data provenance at reduced cost in terms of time, training
and storage consumption. Finally, it is important for the framework to
address not only the characteristics of a given model like model develop-
ing platform, model coordination scheme etc. but also the characteristics
of the associated data products and the execution such as the arrival pat-
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tern of data products, the time required to process data etc. Because, each
model could have variations in the aforesaid characteristics, also referred to
as system dynamics. Considering the system dynamics of a given model,
the framework should be capable of managing both workflow and fine-
grained data provenance, which is referred to as the self-adaptable nature
of the framework. The self-adaptability of the framework should analyze
characteristics of the given model and underlying system dynamics and
based on this analysis, the framework would choose the most suitable
approach to manage data provenance. Accomplishing a framework with
these key properties requires us to closely examine the complete problem
domain, i.e., entities involved in a data intensive scientific application.

1.3 complete problem space

At the beginning of this chapter, we described an example of a scientific
model that was facilitated to control a drinking water well. First, scientists
designed the model and then executed the model to produce the result
set. Based on this example, we can characterize the problem space into
two phases: design phase and execution phase. Figure 1.1 depicts differ-
ent entities pertinent to a scientific model both at design and execution
phase, represented by rectangles. Figure 1.1 also shows examples of differ-
ent scientific models based on their characteristics, represented by round-
shaped boxes. The entities defined during the design phase of a scientific
model are: i) the scientific model itself and ii) different activities within
the model. These two entities are represented by the top two rectangles
in Figure 1.1. The entities involved during the execution phase of a scien-
tific model are represented by the bottom two rectangles shown in Figure
1.1. Each activity defined at the design phase instantiates a corresponding
processing element during the execution of a model and these processing
elements process input data products and produce output data products.
Data products have different characteristics with regard to their access and
availability. We discuss different characteristics of these entities below.

1.3.1 Design Phase Characteristics

During the design phase, scientists define the model which is based on
different activities, i.e., atomic units of work performed as a whole [1]. In
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Figure 1.1: The problem space showing different characteristics of a scientific
model

case the scientific model is specified in a provenance-aware platform [92],
the provenance information is automatically acquired. Examples of the
platforms where provenance awareness has been considered are scientific
workflow engines such as Taverna [102], VisTrails [24], Kepler [84], Karma2

[116], Wings/Pegasus [77], stream data processing or complex event pro- Model char-
acteristicscessing engines like SensorDataWeb2, STREAM [8], Aurora [2], Borealis

[3], or Esper3. Provenance has been considered in these platforms because
they are targeted towards particular applications where provenance plays
an important role.

In case the scientific model is specified in a provenance-unaware platform,
the provenance information must be maintained manually by the user. This
requires training of the user and a significant effort in manually document-
ing provenance information. Examples of provenance-unaware platforms
are general-purpose programming languages such as Python, generic data
processing tools such as Microsoft Excel, R, MATLAB etc.

2 Available at https://sourceforge.net/projects/sensordataweb/
3 Available at http://esper.codehaus.org/
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The second dimension of classifying scientific models is based on the
underlying coordination approach of the model (e.g. data-flow or control-
flow) [111]. In control-flow coordination the execution of an activity de-
pends on the successful completion of the preceding activity. This paradigm
is used in many programming languages that a statement/activity can
only be executed after the previous statement has been completed. It also
applies to many workflow models and logical formulations. As a contrast,
in data-flow coordination the execution of an activity depends on the avail-
ability of data. The execution of an activity produces again data, which
may trigger the execution of other activities. This paradigm is used in
stream data processing and complex event processing engines as well as
in models used in distributed systems research such as I/O automata [86].

These different dimensions of categorizing scientific models are repre-
sented by the first rectangle from the top in Figure 1.1. The rectangle is
divided into 4 quadrants where each quadrant has specific characteristics.
The round-shaped boxes inside the rectangle contains an example of a sci-
entific model having characteristics of that corresponding quadrant.

The distinctions between model’s developing platform like provenance-
aware vs. provenance-unaware as well as model’s underlying coordination
approach like control-flow vs. data-flow describe the characteristics of a
scientific model and classify them accordingly. In addition to this, furtherActivity

characteris-
tics

classifications are required on the activity-level, which is represented by
the second rectangle from the top in Figure 1.1. Several activities comprise
a scientific model. There are two important characteristics of an activity
that need to be documented to help scientists finding and understanding
the origin of a data product during execution phase. One of them is input-
output ratio. The input-output ratio [70] refers to the ratio between the num-
ber of contributing input data products producing output to the number of
produced output data products. Depending on activities, it can be either
variable (e.g. select in a database) or constant (e.g. project in a database).
The input-output ratio is required to establish data dependencies between
contributing input and output data products. The other important charac-
teristic of an activity indicating the availability of produced data product
by that particular activity, is referred to as IsPersistent. The IsPersistent prop-
erty describes whether the data product produced by an activity is stored
persistently into a file/database or not.

Documenting the input-output ratio and the IsPersistent characteristics
and potentially the other characteristics of the activities during the de-

6



1.3 complete problem space

sign phase explicated in the workflow provenance helps to understand
the working mechanism of the activities which in turn is required to infer
fine-grained data provenance. These different characteristics of classifying
different activities are represented by the second rectangle from the top
in Figure 1.1. The round-shaped boxes inside the rectangle contains an
example of an activity having characteristics of that particular quadrant.

The documented characteristics and the relationship between activities
during the design phase results into the workflow provenance of the scien-
tific model. While the workflow provenance is acquired automatically in a
provenance-aware platform, this must be done manually in a provenance-
unaware platform. However, there is a demand in the scientific community Workflow

provenanceto capture workflow provenance automatically in a provenance-unaware
platform such as a programming/scripting language [6]. To accomplish
this, the challenge is to transform control dependencies between activities
into data dependencies by interpreting and analyzing the code. That is to
transform a control-flow statement (e.g. function call) into an activity or a
group of activities which only exhibits data dependencies.

Please note that in different scientific models, activities have different
granularities ranging from complex operations to a single arithmetic oper-
ation. While the granularity of the activities is not influencing the prove-
nance acquisition, it is influencing the complexity of the acquired prove-
nance information and the interpretation by the user.

1.3.2 Execution Phase Characteristics

The entities involved during the execution phase are: i) processing ele-
ments and ii) data. These entities and their characteristics are shown using
the bottom two rectangles in Figure 1.1.

An activity defined in the design phase instantiates a corresponding
processing element during the execution phase. Processing elements have Processing

element
characteris-
tics

variations in their processing delay, i.e. amount of time required to pro-
cess input data products. As an example, processes performing addition
or projections have constant processing delays, referred to as constant de-
lay processing elements. Alternatively, executing some processing elements
such as performing a join in a database or calculating the greatest common
divisor, require different amount of time at each execution. Because, the ex-
ecution of these processing elements depends on the number of input data
products considered by the processing elements or the number of iterations
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needed to perform the operation successfully. These are referred to as vari-
able delay processing elements. The third rectangle from the top in Figure
1.1 shows the different dimensions of classifying processing elements and
the corresponding examples in round-shaped boxes within the rectangle.

Independent of processing elements characteristics, the contributing data
also exhibits its own characteristics. Data might arrive continuously (e.g.Data char-

acteristics data streams) or can be collected before the execution begins (e.g. offline
data). Data streams might have different data arrival patterns. Data tuples
arriving at regular intervals are referred to as constant sampling data (e.g.,
temperature measurements sent at regular intervals). On the other hand,
data might also arrive at an irregular interval such as buying and selling
quotes on an instrument in a stock market. These are referred to as variable
sampling data. The different characteristics of data products along with the
examples are depicted by the bottom most rectangle in Figure 1.1.

The relationships between data and processing elements during the exe-
cution phase are essentials to derive the fine-grained data provenance of a
scientific model [19]. Existing work documents fine-grained data prove-Fine-

grained
data

provenance

nance explicitly in a database, also known as the annotation-based ap-
proach [21, 131, 109, 58, 108]. These approaches require a considerable
amount of storage to maintain fine-grained data provenance especially if
a single input data product contributes several times, producing multiple
output data products. Sometimes, the size of provenance data becomes a
multiple of the actual data. Since provenance data is ‘just’ metadata and
less often used by end users, explicit documentation of fine-grained prove-
nance seems to be infeasible and too expensive [64, 69]. One of the potential
solutions to overcome this problem is to infer fine-grained data provenance
based on the given workflow provenance and timestamps of data products.
Therefore, inferring the fine-grained data provenance can make the com-
plete framework cost-efficient in terms of storage consumption.

Like the representation of the workflow provenance based on the com-
plexity of the associated activities, fine-grained data provenance might also
be represented based on the different levels of granularity of the associated
data products. In a particular scientific model, a data product might repre-
sent a data tuple in a relational database while in an other scientific model,
a data product can represent a file in the physical memory. Though the
inference of fine-grained data provenance is not influenced by the granu-
larity of the data, the semantics of the fine-grained data provenance must
be interpreted by the user.
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Developing an inference-based framework to manage both workflow
and fine-grained data provenance requires attention to the underlying en-
vironment along with the system dynamics including processing element
and data characteristics. The inference mechanisms should take variation
in the used platform, processing delay and data arrival pattern into con-
sideration to infer highly accurate provenance information. To accomplish
that, self-adaptability of the framework is required which can decide when
and how to execute the most appropriate inference-based methods based
on a given scientific model and its associated data products.

1.4 research questions

Based on the problem space described in Section 1.3, we need to answer
the following primary research question which is in fact the center of in-
vestigation in this thesis.

Primary Research Question (RQ): How to manage data provenance
with minimal user effort in terms of time and training and at reduced
storage consumption for different kinds of scientific models?

Our goal is to develop a framework for managing data provenance to
satisfy the primary research question. To accomplish such a framework,
first, we need to ensure that the workflow provenance of a scientific model
which has been designed and developed in a provenance-unaware plat-
form reported in Section 1.3.1, is captured automatically. This automatic
capturing of workflow provenance ensures that the envisioned framework
is applicable to any scientific model and thus the framework would be
generic. Furthermore, acquiring workflow provenance automatically reduces
user effort in terms of time and training. Therefore, one of the research
questions to be satisfied to achieve such a framework is:

RQ 1: How to capture automatically the workflow provenance of a sci-
entific model developed in a provenance-unaware platform at reduced
cost in terms of time and training?

The automatically captured workflow provenance of a scientific model
provides an overview on the relationship between different activities within
the model. However, it does not represent the provenance information pro-
duced during the execution of that scientific model. Therefore, we need
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a mechanism incorporated into the framework that can manage prove-
nance information produced at the tuple-level, i.e., the relationship be-
tween data products, also referred to as fine-grained data provenance.
Fine-grained provenance information could become a multiple of actual
data products due to the multiple processing of the same input data prod-
uct producing multiple output data products. The envisioned framework
should be able to reconstruct the fine-grained data provenance at reduced
storage consumption. Therefore, the next research question to accomplish
a provenance-aware framework is:

RQ 2: How to infer fine-grained data provenance under different sys-
tem dynamics at reduced cost in terms of storage consumption?

The envisioned provenance-aware framework should be a self-adaptable
system as described in Section 1.3.2. The self-adaptability allows the com-
plete framework applicable to any given model with variant system dy-
namics such as processing delays, data arrival pattern etc. It ensures that
the provenance-aware framework always provides the optimal provenance
information. Based on this requirement, we formulate the last research
question which is given below.

RQ 3: How to incorporate the self-adaptability into the framework
managing data provenance at reduced cost?

Satisfying these three research questions leads us to develop a generic,
cost-efficient and self-adaptable inference-based framework which in turn can
satisfy the primary research question of this thesis.

1.5 research design

The research in this thesis has three phases: i) problem investigation, ii)
solution design and iii) solution validation. The research design is depicted
in Figure 1.2. The research phases are represented by the rectangles where
as the actions taken in that phase are shown by the round-shaped boxes
within the particular rectangle.

Firstly, we start by sketching the complete problem space discussed in
Section 1.3 followed by extensive literature study to facilitate a thorough
problem investigation phase. Based on the problem space and existing lit-
erature, we formulate the key design factors the envisioned framework
should comply with.
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Figure 1.2: Research phases and corresponding actions in the context of this thesis

Secondly, we design the methods based on the research questions and so-
lution criteria identified in the problem investigation phase. Our proposed
methods address all aforesaid research questions. We develop a technique
to capture workflow provenance automatically in a provenance-unaware
platform. Furthermore, we propose several algorithms to infer fine-grained
data provenance under variable system dynamics. All of these inference-
based methods are capable of managing provenance in diverse situations
and at reduced costs in terms of time, training and storage consumption. Fi-
nally, we introduce self-adaptability into the framework so that the frame-
work itself can decide autonomously which method to apply under a given
environment. In the solution design phase, we also simulate the proposed
methods to evaluate their performance in general.

Finally, we validate the proposed inference-based framework by con-
ducting two case studies with different characteristics. One of them is a
scientific model written in Python, handling offline data while the other
is a model written in Answer Set Programming (ASP), dealing with data
streams. To demonstrate the case studies, we implement the methods and
techniques designed during the solution design phase and develop the
framework as a stand-alone tool in Java. The applicability of the proposed
framework to these scientific models supports the claim that our frame-
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work is generic. Furthermore, it can capture and infer provenance informa-
tion at reduced time, training and storage consumption.

1.6 thesis contributions

The primary contribution of this thesis is to develop a framework that
manages both workflow and fine-grained data provenance for data in-
tensive scientific models at reduced costs in terms of time, training and
storage consumption. The primary contribution is realized by achieving
the following contributions satisfying the research questions mentioned in
Section 1.4.

• Capturing workflow provenance: In this thesis, we propose a novel tech-
nique to capture workflow provenance automatically based on a given
program which is used for actual processing. This overcomes the
difficulties with collecting workflow provenance automatically for
a model developed using a provenance-unaware platform such as
any procedural or declarative language. The proposed technique also
captures workflow provenance with reduced effort in time and train-
ing compared to the manual documentation. This technique of auto-
matic capturing of workflow provenance satisfies RQ 1. Since there
are many programming and scripting languages and each has its
own set of programming constructs and syntax, we showcase our
approach using Python programs. Python is widely-used to handle
spatial and temporal data in the scientific community as well as in
commercial products such as ArcGIS4.

• Inferring fine-grained data provenance: We also propose several fine-
grained provenance inference methods to infer fine-grained data prove-
nance in a cost-efficient way in terms of storage consumption com-
pared to the explicit fine-grained provenance documentation tech-
nique. The proposed inference-based methods are applicable to a va-
riety of scientific models under different system dynamics discussed
in Section 1.3.2. As an example, one of our proposed fine-grained
provenance inference method is better suited to the systems han-
dling offline data and having constant processing delay while an-
other method is most appropriate to the systems processing data

4 Available at http://www.esri.com/software/arcgis
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streams and having variable processing delays. We discuss the ba-
sic principle and the applicability of each of these methods which
infers fine-grained data provenance based on the given workflow
provenance of the model and the timestamps associated with data
products. These inference-based methods satisfy RQ 2.

• Introducing a self-adaptable framework: Furthermore, to accomplish a
self-adaptable framework, we introduce a decision tree which is used
during the execution of a scientific model facilitating the proposed
framework to decide the most appropriate fine-grained provenance
inference method based on the underlying system dynamics. The
self-adaptability feature dynamically decides per activity within the
model on how to record and infer fine-grained provenance informa-
tion based on the observed system dynamics, i.e., data products ar-
rival pattern, processing delay etc. The outcome of the decision tree
allows the framework to be self-adaptable and thus satisfies RQ 3.

In sum, we propose an inference-based framework to manage both work-
flow and fine-grained data provenance for a variety of data intensive sci-
entific applications. Our proposed framework is applicable to any type
of model, confirming its generic nature. Moreover, the framework is cost-
efficient in terms of time, training and storage. It is also self-adaptable which
copes with variant system dynamics such as input data products arrival
pattern, processing delay etc. Therefore, the proposed framework addresses
all three key design factors mentioned in Section 1.2.

We evaluate the proposed framework based on two use cases. One of
them involves a scientific model for estimating the global water demand
[127]. This model includes offline geospatial data and is developed using
Python. The other case study is about estimating the degree of accessibil-
ity of a particular road segment. The scientific model is developed using
a declarative language - Answer Set Programming (ASP). This model pro-
cesses data streams collected from various sources like twitter, rss feeds
etc. One of the key differences between these two models is the former
provides deterministic results while the later generates non-deterministic
result sets. In both cases, the framework can capture workflow provenance
and infer fine-grained data provenance. Therefore, the evaluation demon-
strates the applicability and suitability of the proposed framework in a
scientific data processing model which leads to the conclusion that the
framework satisfies Primary Research Question of this thesis.
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1.7 thesis structure

The remainder of this thesis is structured as follows. In Chapter 2, we
discuss the existing systems and research along with their pros and cons.
Based on this discussion, we conclude that the key design factors reported
in Section 1.2 should be addressed by the envisioned framework.

Chapter 3 presents the mechanism of capturing workflow provenance
automatically from a given Python program. This chapter addresses RQ 1
as shown by the Figure 1.3. In Chapter 4, 5 and 6, we explain the inference-
based methods to infer fine-grained data provenance under variant sys-
tem dynamics. Chapter 4 presents the method to infer fine-grained data
provenance which is suitable for an environment where activities have con-
stant processing delays and data products arrive at a regular interval. In
Chapter 5, the proposed method is better suited to the systems process-
ing data streams with variant system dynamics. This method is extended
in Chapter 6, where we explain an inference-based mechanism that infers
fine-grained data provenance for the complete workflow, i.e., multiple pro-
cessing steps, with variant system dynamics. All these chapters address
RQ 2 as depicted in Figure 1.3. Chapter 7 explains the mechanism of incor-
porating self-adaptability into the framework. This chapter addresses RQ
3 as shown in Figure 1.3.

To validate the framework, we perform two case studies discussed in
Chapter 8 and 9. The characteristics of these case studies based on Section
1.3 are quite different from each other which helps us to demonstrate the
wide applicability of the framework. At last, in Chapter 10, we summarize
the contributions of this thesis based on the research questions, posed in
Section 1.4, followed by a discussion on future research directions in the
context of this thesis.
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2
R E L AT E D W O R K

The goal of this thesis is to develop a provenance-aware framework that
can infer both workflow provenance and fine-grained data provenance in
a cost-efficient manner. Therefore, data provenance is the core concept of
this thesis. As a consequence, it is required to study existing research and
systems in different dimensions of provenance to point out and emphasize
the key criteria of the envisioned framework managing data provenance.

Figure 2.1 depicts the way we structure the existing research in the field
of provenance. We categorize the existing research and systems at different
dimensions of provenance such as provenance collection methods, prove-
nance representation and sharing techniques as well as provenance appli-
cations, shown in Figure 2.1. A lot of attention has been paid to design
and develop provenance-aware platforms in scientific workflow systems
as discussed in surveys conducted by Simmhan et al. [114] and Davidson
et al. [32]. Provenance-aware platforms have been also built in the context
of database systems as discussed in [119, 27]. Furthermore, several studies
on provenance for stream data processing have been undertaken. Recently,
Moreau has investigated provenance in the context of Web [94]. There also
exists provenance-aware platforms, developed specifically for a particular
application domain or language. A comprehensive overview of provenance
systems primarily focusing on the e-science domain is presented in [17].
Provenance systems targeting a specific programming language or data
processing tools has also been built. In these aforesaid platforms, prove-
nance has been collected at different levels of granularity depending on its
target application and user [19].

After collecting provenance information, a provenance-aware system has
to represent this information. Moreover, interoperability of provenance in-
formation has to be ensured to allow seamless sharing of provenance in-
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formation between different systems. In the context of geographic informa-
tion systems (GIS), one of the earliest application domain of provenance,
there are a few existing work to represent provenance data for geographic
information and services. Recently, a World Wide Web Consortium (W3C)
family of specifications has been proposed for provenance representation
and sharing.

Provenance information has been facilitated for a number of reasons
[114]. Provenance can be used for auditing purposes such as monitoring
resource consumption, error tracing etc. It could be also facilitated to vali-
date a scientific model. Moreover, provenance information can be used as
a replication recipe of output data products, produced by a scientific ex-
periment. Very recently, Netherlands eScience center published a white pa-
per on ‘data stewardship’ [33], referring to the practice of preserving data
to ensure reproducibility and to also stimulate more data-driven research
where provenance can play an important role. Another recent study [74]
has shown that provenance information can be also used for debugging a
scientific data processing model.

In this chapter, we present a review of existing research and systemsChapter
structure that capture provenance in different domains. Furthermore, we provide

a brief discussion on techniques used for provenance representation and
interoperability. We also highlight applications of provenance specially for
debugging purpose by describing existing work in this direction. Based on
this literature review, we emphasize a few points that should be considered
to develop the envisioned framework inferring data provenance, which is
in the center of investigation of this thesis.

2.1 provenance collection

The bottom part in Figure 2.1 shows existing provenance systems in differ-
ent domains. In this section, we review the existing work in these domains
that apply different methods and techniques to collect provenance, defined
at different levels of granularity.

2.1.1 Provenance in Scientific Workflow Engines

Much of the research in provenance has come into the light from scien-
tific workflow communities. Provenance has been studied from a wide an-
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Figure 2.1: Existing research and systems in different dimensions of provenance

gle of perspectives including collection, representation, application-specific
methods in the context of a scientific workflow engine. In this section, we
discuss existing research and systems in this domain.

A workflow management system (e.g. Kepler [84], Taverna [102], Vis-
Trails [24]) defines and manages a series of activities within a scientific
data intensive experiment to produce an output data product. In such sys-
tems, activities create a processing chain and each activity takes input data
products from a previous activity, i.e., data-driven workflows. Business
workflows are different from scientific workflows [85]. Business workflows
provide a common understanding of business processes that involve dif-
ferent persons and various information systems. It can serve as a blueprint
for implementing the process. While scientific workflows mainly focus on
derivation of data and in these kind of systems data processing activities
are treated as black boxes, hiding details of data transformations [32].

Kepler is a scientific workflow management system for designing, exe-
cuting, reusing, evolving, archiving, and sharing scientific workflows [84]. Kepler

Kepler provides process and data monitoring, provenance information and
high speed data movement solutions. The Kepler system principally tar-
gets the use of a workflow metaphor for organizing computational tasks
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that are directed towards particular scientific analysis and modeling goals.
Thus, Kepler scientific workflows generally model the flow of data from
one step to another in a series of computations that achieve some scientific
goal. Several extensions of Kepler have been proposed and implemented
to support provenance in different domains [75, 13]. Jararweh et al. have
exploited the open-source features of Kepler system and have created cus-
tomized processing models in order to accelerate and automate the experi-
ments in ecosystems research [75]. In [13], authors have presented an exten-
sion to Kepler system to support streaming data, originating from environ-
mental sensors. They have analyzed and archived data from observatory
networks using distinct use cases in terrestrial ecology and oceanography.

Karma2 provenance framework was developed to document provenance
of data products produced by scientific workflows in a service-orientedKarma2

architecture [115, 116]. Two forms of provenance are collected in Karma2 -
workflow provenance and data provenance (fine-grained). Workflow prove-
nance describes execution of workflows and invocations of associated ser-
vices while data provenance explains the derivation of a data product,
including input data products and associated activities/data transforma-
tions.

In the life science domain, the Taverna project has developed a power-
ful, scalable tool for designing and executing bio-informatics workflowsTaverna

[102, 68]. The Taverna workbench includes the ability to monitor the run-
ning of a workflow and to examine the provenance of the data produced.
In Taverna, recorded provenance information includes technical metadata
explaining how each activity has been performed. In addition, start and
end time of an activity as well as a description of the service operation
used, are also recorded.

Barga et al. have proposed a mechanism for capturing provenance in-
formation in scientific workflows [11]. In this study, authors have arguedBarga et al.

that a single representation of provenance cannot satisfy all existing prove-
nance queries used in these kind of systems. Therefore, authors introduced
a provenance model supporting multiple levels of provenance representa-
tion [12]. The different layers represent provenance information collected
during both design and execution phase of a scientific workflow, i.e., prove-
nance at different granularity levels. Therefore, scientists can comfortably
deal with complexity and size of provenance information by facilitating
this multi-layered provenance model.
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VisTrails [24, 42] builds on a similar idea of multi-layered provenance
representation presented in [11, 12]. In VisTrails, provenance information is VisTrails

captured for various stages of evolving workflows and their data products.
VisTrails not only records intermediate results produced during workflow
execution, but also records the operations/activities that are applied to
the workflow. It documents the modification of workflows, as for instance
adding or replacing activities/modules, deleting activities and setting pa-
rameters to an activity, by tracking the steps followed by users. Therefore,
VisTrails can ensure reproducibility of scientific computations and can pro-
vide support for the layered-based tracking of workflow evolution.

Kim et al. proposed another multi-layered provenance capturing mech-
anism in large-scale scientific workflow systems [77]. This approach is im- Wings/Pe-

gasusplemented in the Wings/Pegasus framework [34, 55]. It documents prove-
nance information at different levels of granularity. “Application-level prove-
nance” describes data-driven relationship among activities while “execu-
tion provenance” represents provenance information gathered during the
execution of workflow which includes intermediate data, details on data
transformations etc.

Recently, Buneman et al. have proposed a hierarchical model on prove-
nance information and have also demonstrated how this hierarchical struc- ProvL

ture can be derived from the execution of programs in ProvL programming
language that describes the workflows [22]. ProvL is a functional language
which can be used to express simple workflows. However, ProvL cannot
handle the concept of streaming and concurrency in workflows.

Another study in the area of provenance-aware scientific workflow sys- PASOA

tems is Provenance Aware Service Oriented Architecture (PASOA) [62, 63].
PASOA builds an infrastructure for recording and reasoning over prove-
nance in the context of e-Science. PASOA is designed to support interac-
tions between loosely-coupled services. In this study, the idea of decom-
posing process documentation, i.e., what actually happened at execution
time, has been proposed to record provenance information efficiently. Each
part of the process from the whole process documentation is defined as a
p-assertion. By capturing different types of p-assertions such as content of
messages (interaction p-assertions), causal relationships between messages
(relationship p-assertion) and the internal states of services (service state
p-assertions), scientists can analyze an execution, validate it or compare it
with other executions. Based on this idea, the Provenance Recording for
Services (PReServ) [65] software package has been developed. This imple-
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mentation allows developers to integrate recorded process documentation
into their applications.

In the area of scientific data management, authors proposed annotation-
based provenance framework [87, 5]. This framework is implemented on
the top of Kepler workflow management systems [84], representing prove-
nance of scientific workflows. In this framework, each activity/module

Annotation-
based

framework

takes collections of data as an input and produces output collections by
adding new computed data to the data structure it received. Output collec-
tions are annotated with explicit data dependency information to allow the
framework to trace provenance of scientific data products. An extension of
this framework described in [18] has introduced a solution to minimize
size of documented provenance information by allowing annotations on
collections to cascade to all descendant elements.

Based on the aforesaid discussion, we can conclude that scientific work-Summary

flow engines capture provenance at different levels of granularity. Prove-
nance information can be used not only for explaining the origin of output
data products but also for debugging and troubleshooting the workflow
and its execution. The existing solutions capture data-driven relationship
among activities. Some of them proposed multi-layered provenance rep-
resentation to allow users to deal with the complexity and large size of
provenance information [115, 11, 24, 77]. Existing provenance-aware sci-
entific workflow systems require scientists to learn basic constructs of a
particular workflow management system and design the scientific experi-
ment accordingly which is time consuming and also need substantial train-
ing for scientists. Furthermore, some of these scientific workflow engines
are developed for a particular domain such as Taverna [102, 68] addresses
bioinformatics workflows only. Developing a generic provenance manage-
ment framework, i.e., applicable to any given scientific model/experiment,
and a cost-efficient one also in terms of time and required training would
be beneficial to the scientific community.

2.1.2 Provenance in Database Systems

A considerable research effort has been made by the database community
to manage data provenance. Data provenance can be defined at different
granularity levels (e.g. relation or tuple). Furthermore, data provenance
has been categorized based on the type of queries (e.g. why, where, how)
it can satisfy. Different techniques have been proposed to generate data
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provenance in the context of a database system. Collected provenance infor-
mation has been also represented using various techniques. In this section,
we provide a review on existing research focusing provenance in database
systems.

In the context of database systems, data provenance provides the de-
scription of how an output data product is achieved through the transfor-
mation activities from its input data [20]. In [20], Buneman et al. have Types of

data
provenance

also described a data model to compute provenance on both relations
(coarse-grained) and tuples (fine-grained) level. In this data model, the
location of any piece of data can be uniquely described by a path. Fur-
thermore, in this study, authors have also drawn a distinction between
why-provenance and where-provenance. Why-provenance determines the input
data tuples which contributed to produce an output data tuple. This type
of provenance is studied in [133, 29]. On the other hand, where-provenance
identifies locations in the source database from where data products were
extracted. An annotation-based approach has been proposed to address
where-provenance [21]. In this approach, annotations associated with tu-
ples in the source database can be propagated to the output database based
on where data products are copied from.

Provenance of a particular data product could be generated following
two approaches: lazy approach and eager approach. In the lazy approach, Generation

techniquesprovenance information is generated on demand based on a user request
[133, 29]. On the other hand, in the eager approach, provenance information
is propagated from one activities to another during execution of a scientific
experiment [21, 15, 28, 60, 61, 56]. Next, we discuss these existing work.

Woodruff et al. [133] have proposed the notion of weak inversion and
verification to generate data lineage (provenance). Based on a given output Weak

inversiondata product, weak inversion functions regenerate input data products that
contributed to produce that given output. However, the set of contributing
input data products returned by the inverse function is not guaranteed to
be perfectly accurate. Therefore, a separate verification function is required
to examine the answer produced by weak inversion function. One pitfall
of this technique is that not all functions are invertible. Therefore, this
technique has limited applicability.

Another work falling in the class of lazy approach of provenance gener-
ation is the study reported in [30, 29]. In this study, Cui et al. have pre- Structural

analysissented an algorithm for lineage tracing in a data warehouse environment.
This generic algorithm automatically generates lineage (provenance) data
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through analyzing view definitions and algebraic structures of queries. The
algorithm generates data provenance on tuple level and allows users to
trace the lineage of a data product to its contributing input data products.

Based on the work mentioned in [30, 29], Trio, a database system manag-
ing not only data but also the accuracy and the lineage of data is proposed
in [131, 4]. Trio introduces an integrated technique, combining both lazy
and eager approaches, to document data provenance into a database. TrioTrio

introduces a new query language TriQL [14], an extension of SQL, to deal
with uncertainty and lineage information. Trio explicitly documents lin-
eage information about direct ancestors only for each output data tuple.
Therefore, users have to facilitate Trio’s recursive traversing lineage algo-
rithm to achieve complete provenance of a particular output tuple. How-
ever, Trio does not address temporal data rather it focuses on adding accu-
racy and lineage for conventional, non-temporal data.

To overcome the limitations of Trio project [131] addressing temporalLIVE

data, Sarma et al. introduced LIVE [109], a complete DBMS, which can
store relations with simple versioning capabilities. Versioning in LIVE is
realized by adding start and end logical version number to each data tu-
ple. LIVE is an offshoot of Trio which can also manage data with its uncer-
tainty and lineage. LIVE adopts Trio’s lineage functionality to propagate
annotations containing lineage and uncertainty information of data tuples.
Like Trio, LIVE also provides fine-grained (tuple level) data provenance.

The rest of the work generating provenance in the context of databasePropaga-
tion

rules
systems fall in the category of eager approach or annotation-based ap-
proach. Buneman et al. have proposed propagation rules [21] which are de-
fined for each relational operator to determine how annotations are carried
from source to output database. This technique can express location-based
dependency between source and output database.

DBNotes [28, 15] is an annotation management system for relationalDBNotes

database systems. It also adopts the idea of annotation propagation. It al-
lows users to specify how annotations should propagate from source to
output database by facilitating pSQL, an extension of SQL. It provides
three different types of annotation propagation scheme that are supported
by pSQL. In the default scheme, annotations are propagated based on where
data is copied from (where-provenance) whereas in default-all scheme, an-
notations are propagated according to where data is copied from in all
equivalent queries. DBNotes also provides custom scheme based on user
specification. DBNotes has the ability to provide a detailed explanation on
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provenance of a data tuple by analyzing automatically propagated annota-
tions through SQL queries.

Green et al. have proposed another technique to capture provenance
in database systems called provenance semirings [61]. This study not only
focuses on why-provenance, but also identifies the need to understand how-
provenance which describes how the input data is transformed to produce Provenance

semiringsthe output data. Provenance semirings facilitates relational algebra calcula-
tions to represent provenance information. In this approach, annotations in
the form of variables are attached to each data tuple in the source database.
When a query is executed, variables of relevant tuples are propagated and
form polynomials with integer coefficients for the output tuples. Authors
described an application that applied the technique of provenance semir-
ings in the context of collaborative data sharing in [60].

In another work, Glavic et al. have proposed the Perm system (Prove- Perm

nance Extension of the Relational Model) which represents provenance as
a relation containing both output tuples and contributing input tuples [56].
Perm propagates provenance related annotation along with the actual re-
sults by rewriting relational operators within a query. The Perm system
focuses on why-provenance.

Another project has been initiated for recording and querying prove-
nance data, called Tupelo2 project1. This project is aimed at creating a Tupelo2

metadata management system based on semantic web technologies [46].
It stores annotation triples (subject-predicate-object) in several kinds of
databases, including relational databases.

Studies reported in [21, 28, 15, 61, 56] are annotation-based provenance
capturing techniques. A recent study conducted by Buneman et al. [23] Hierarchi-

cal
annota-
tions

has shown that annotations may itself be annotated. In this study, authors
have described a hierarchical model of annotations where annotations are
treated as first class data. A particular query together with the data, de-
scribes what is to be treated as data and what as annotation. Propagating
annotations through the query are based on lineage and boolean semantics.
Authors have validated their idea by annotating datalog programs.

Several provenance solutions in database systems address why-provenance
[133, 30, 29, 56, 131, 109]. Recent studies in this area provide extended so- Summary

lutions that can address where-provenance [21, 28, 15]. Another study con-
ducted by Green et al. focuses on the need to understand how-provenance
[61]. Usually, scientists from other domains would like to investigate the

1 Available at http://tupeloproject.ncsa.uiuc.edu/
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derivation history of an unexpected result, i.e., why is it in the output, re-
ferring back to the why-provenance. Therefore, there is a scope of further
research in this direction.

Furthermore, existing works supporting provenance in the context of
database systems can be also classified based on the provenance capturing
approach - eager and lazy approach. Eager or annotation-based approaches
[21, 131, 109, 28, 15, 60, 56, 46] documents provenance information explic-
itly which incurs a considerable amount of storage overhead for maintain-
ing provenance data. From this discussion, we can sense the need of a
framework managing data provenance at reduced storage costs.

2.1.3 Provenance in Stream Data Processing

In general, stream data processing engines handle massive amount of sen-
sor data which are transmitted in form of a data stream - a real-time, con-
tinuous, ordered sequence of data products [59]. A data stream should
be processed immediately unlike conventional data. Therefore, traditional
data processing techniques/queries are not sufficient because of their in-
ability to handle characteristics of streaming data. Instead, a new class of
queries, known as continuous queries, are defined to process streaming
data. Continuous queries facilitate push-based query semantics, i.e., once
new data tuples arrive, queries are executed automatically and the result
is provided to users or to the next level of processing.

Lee et al. proposed a computational model, known as dataflow process
networks, that can model stream based data processing approaches [82].Dataflow

process
networks

In dataflow process networks, each process consists of repeated firings of
a dataflow actor. When the actor fires, it maps input tokens into output
tokens. Firing consumes input tokens and produces output tokens. A se-
quence of such firings is a particular type of a Kahn process network [76].
By dividing processes into actor firings, the considerable overhead of con-
text switching incurred in most implementations of Kahn process networks
is avoided.

Chandrasekaran et al. adopted the concept of dataflow process networks
for stream data processing engine [25]. They proposed a continuous queryTele-

graphCQ processing engine, called TelegraphCQ, which mainly focuses on shared
query evaluation and adaptive query processing. Since streaming data is
an infinite sequence of data products, a new mechanism was required to
bound this infinite data stream so that continuous queries could be exe-
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cuted over a finite set of data products which is a subset of the entire data
stream. In [25], authors defined different windowing schemes to bound
this infinite data stream. However, provenance tracing has not been sup-
ported in TelegraphCQ.

The interest of the research community in stream data processing initi-
ates several academic and commercial research projects which result into
a number of stream data processing prototypes. The Stanford InfoLab has STREAM

undertaken a data stream processing project called STREAM (STanford
stREam datA Manager) [8, 7]. STREAM focused on computing approxi-
mate results and also tried to understand the memory requirements of
posed queries. It proposed synopsis data structure which is an approximate
data structure rather than an exact representation and was used to opti-
mize storage requirement for stream data. In 2006, this project has officially
wound down. It did not provide any support for data provenance.

There were several other projects in this field. The Aurora [2] system Aurora

manages data streams for monitoring applications. It has a resample box
which is used to coordinate between different data streams. In Aurora, one
tuple must be delayed for the arrival of the second one for processing if
there is any resample box attached to the system. Aurora minimizes stor-
age need for streaming data tuples by using load shedding. This mechanism
drops tuples randomly or filter out tuples based on a given condition. The Borealis

Borealis [3] is an extended version of Aurora and also includes distributed
functionality. Since it inherits core stream processing functionality from
Aurora, it coordinates various streams and also optimizes the storage re-
quirement. However, Borealis can dynamically revise the query results if
the previously generated result is imperfect or partial. Moreover, it op-
timizes the distributed processing of sensor data in terms of processing
speed and memory consumption. Gedik et al. proposed a large-scale, dis-
tributed data stream processing middleware, called System S [53]. It sup- System S

ports structured as well as unstructured data stream processing and can
be scaled from one to thousands of compute nodes. It introduces a barrier
operation which is used as a synchronization point. This point consumes
multiple data streams and provides output only when a tuple from each
of those arrived. Unlike Aurora and Borealis, System S does not optimize
storage requirement of data products. These aforesaid prototypes do not
possess any support to maintain provenance.

There are a few existing work addressing data provenance in stream
data processing environment. Vijayakumar has recorded provenance of
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data streams by documenting the change in terms of rate and accuracy
of the input streams [123]. In this connection, a data model and architec-Change in

stream
events

ture for capturing and collecting provenance by facilitating timestamps
of change events has been proposed in [124, 125]. This model captures
provenance by accommodating two types of information: initial informa-
tion about input streams and a change log. Since the change events have
attached timestamps, the model can associate these change events with the
set of events in the output stream which have been affected by a particu-
lar change. It can save a lot of disk space by storing the information only
if a change event occurs during execution. However, it does not provide
provenance at a fine level of granularity (tuple level).

Another study conducted by Ledlie et al. have outlined the structure of
Provenance-

aware
sensor data

a provenance-aware storage for sensor data [81]. They have identified two
levels of data indexing mechanism in a streaming context: for each tuple
or for a set of tuples. This is similar concept like fine- and coarse-grained
data provenance, respectively. This work also discussed trade-offs between
a centralized data model and a decentralized one to manage provenance
information.

The work reported in [124, 125, 81] does not provide details about a
provenance capturing framework that can maintain provenance at tuple
level, i.e., fine-grained data provenance, in a stream data processing envi-
ronment. Glavic et al. presented several use cases that motivates the neces-Fine-

grained
provenance

in data
streams

sity of maintaining fine-grained data provenance for streams as well as the
study highlighted a few challenges to achieve such a framework [57]. Stud-
ies reported in [103, 129, 93, 40, 58, 108] proposed different mechanisms to
manage fine-grained data provenance for data streams. Next, we discuss
these work in turn.

Park et al. proposed an annotation-based approach, called tuple-level link,Tuple-level
link to document provenance of sensor data explicitly [103]. In this system, the

transformation of online sensor data is encoded into a URI compatible
link, known as a predecessor link, which allows users to understand how
processed results are derived from original source data, supporting de-
tection and correction of anomalies. A predecessor link can describe the
location of source database and table alongside the search used to retrieve
data from that table and a timestamp. Moreover, this study also presents
a compression technique to reduce the size of links, called incremental com-
pression. This work is designed especially to provide provenance of online
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sensor data in sensornet systems [106] and therefore, it is difficult to apply
this technique for data streams in other domains.

Another study by Wang et al. argued that annotation-based approaches
are not suitable for recording provenance in case of data streams because
of the high storage overhead [129]. To overcome this limitation, the TVC TVC model

(Time-Value-Centric) model was introduced to provide a model-based prove-
nance solution supporting stream processing in medical information sys-
tems. The approach taken in TVC model focuses on the relationship be-
tween tuples of input and output streams of a processing element/activity.
This relation can be explained in terms of some primitive invariants: time-
invariant, value-invariant and sequence-invariant. Time is a primitive that
captures dependencies between an output data product and a past time
window, which is comprised of input data products, generating that par-
ticular output data product. The value primitive defines a dependency in
terms of predicates over the attributes of the input data products. The se-
quence primitive expresses dependencies in terms of the sequence number
of arriving elements, i.e., explaining dependency on a window based on
number of tuples. By combining these primitive invariants provenance of
any data product in output streams can be explained.

Later, Misra et al. have proposed an storage optimization technique [93]
over the work described in [129]. Since data products in input and out-
put streams and their intermediate result data has to be stored to achieve
fine-grained data provenance, this persistence of high volume streaming
data incurs too much storage overhead. Misra et al. have proposed a tech- CMIR

nique called Composite Modeling with Intermediate Replay (CMIR) to reduce
the storage requirement. According to this technique, a group of stream
processing elements are aggregated into a virtual group which is referred
to as a virtual PE (Processing Element). Only input and output streams
of the virtual PE are made persistent and thereafter, define dependencies
based on TVC model. This technique can reduce storage costs consumed
by provenance recording by grouping intermediate processing elements
together.

Another work reported in [40, 58] also addresses fine-grained data prove-
nance management for data streams. In this study, authors have proposed Ariadne

a provenance-aware data stream management system, called Ariadne. Ari-
adne has been implemented on the top of Borealis stream processing en-
gine [3]. It is an annotation-based approach that propagates provenance in-
formation alongside output tuples through operator instrumentation. Ari-
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adne also applies different techniques to optimize storage space required
by provenance data.

Recently, a study conducted by Sansrimahachai have proposed a solu-
tion to track fine-grained data provenance for data streams [108]. AuthorStream

ancestor
functions

has proposed a provenance model for streams that allows to obtain prove-
nance of individual stream elements/data products. In this study, a prove-
nance query method has been introduced which utilizes stream ancestor
functions to obtain the provenance of a particular data product. A stream
ancestor function designed for a particular activity takes the recorded
provenance assertions of input streams as one of its parameter. It may also
take the size of the window and processing delay as additional parameters
to establish dependency between the output stream element and a set of
input stream elements based on the activity. This technique also supports
on-demand provenance queries and optimizes the storage overhead for
recording provenance assertions.

One of the major challenges to track fine-grained provenance for streams
is the amount of provenance data. Most of the aforesaid existing work
try to apply different techniques to optimize the storage requirement of
provenance data. However, solutions reported in [103, 129, 58, 108] haveSummary

to maintain persistent provenance information to some extent. Document-
ing provenance information explicitly at a lower level of granularity, i.e.,
in tuple level, often makes provenance information much larger than the
size of actual data tuples. Especially in case of operations/activities with
sliding windows, a particular data product in input stream elements may
contribute to produce several data products in output stream element. The
large window size and a significant overlaps between sliding windows can
increase the storage cost to maintain fine-grained data provenance substan-
tially. In this case, the storage overhead for provenance collection could be
several orders of magnitude higher than the storage required by the collec-
tion of both input and output tuples. Therefore, investigating the challenge
of managing fine-grained data provenance at reduced storage costs is an
worthy research direction in the field of provenance.

Moreover, neither of these solutions [129, 58] consider the erratic nature
of stream data processing. Depending on the nature of operations/activity
and current workload of the system, it is possible that at each execution
of a particular operation, it would take variable amount of time to process
input data products, which we refer to as processing delay. Furthermore,
arrival of data tuples in the input stream element could be also irregu-
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lar, i.e., the time between two successive input data tuples arrival, also
referred to as sampling interval, could vary. The reverse mapping technique
using stream ancestor functions presented in [108] explicitly documents
the parameters associated with the processing (e.g. processing delay) in
provenance assertions. However, it might not be a feasible choice for data
streams since documenting this information for every input stream ele-
ment/data product would incur a significant amount of storage overhead.
These aforesaid factors should be considered while designing new meth-
ods to achieve fine-grained provenance for data streams.

2.1.4 Provenance in Domain and Application Specific Systems

Provenance-aware systems have been developed in many domains, target-
ing towards specific applications. There exists a number of work in Geo-
graphic Information Systems (GIS) to capture, represent and share prove-
nance data. Furthermore, systems collecting provenance in generic data
processing tools have been also proposed. There are a few language spe-
cific tools that can capture functional level provenance information. In this
section, we discuss these application specific provenance-aware systems.

One of the earliest definitions of provenance was given in the context of
geographic information system (GIS). In GIS, data provenance is known as
lineage, which explicates the relationship among events and source data
in constructing the data product [80]. Provenance is seen as a type of data Geospatial

domainquality measure in geospatial domains. Yue et al. have proposed an ap-
proach to capture provenance data automatically using semantic web tech-
nologies [136]. The provenance data has been stored in a RDF triple store
and has been queried using SPARQL based on a geospatial data prove-
nance ontology. In another study, a provenance framework has been pro-
posed for geoprocessing workflows [137]. This framework provides prove-
nance at different levels of a given geoscientific model. In [138], authors
have reported an approach which enables interoperability for the collected
provenance information in a service-oriented GIS architecture.

Another study by Frew et al. have proposed a data management infras-
tructure to track processing of satellite images [43]. In this study, special- ES3

ized tools are used to collect metadata about the processing steps applied
over different data objects. This provenance information is recorded into
the database in XML format. Afterward, this technique has been extended
by the study reported in [45]. In this study, authors have introduced a new
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approach to capture provenance by monitoring system-level calls from dif-
ferent running processes instead of explicitly specifying provenance about
different processing steps. This provenance collection technique is similar
to the techniques that capture provenance at operating system level [99].
This technique has been used to build a prototype, called Earth System
Science Server (ES3) [44]. Furthermore, in another study, Dozier et al. fa-
cilitates ES3 system to build provenance traces of a scientific experiment
computing snow-covered areas [38]. In large-scale computational systems
like Grid and Web Services, Szomszor et al. have proposed a data model
to provide infrastructure level support for a provenance recording capabil-
ity [118]. They have facilitated relational database systems for creating a
provenance repository.

In the field of business process intelligence, event logs are used to extractProcess
mining knowledge to do process mining. These log files store detailed derivation

history of processes, i.e., provenance of business processes. In this direc-
tion, van Dongen et al. proposed a meta model for event logs, represented
as an XML format, called MXML [121]. Moreover, the same group of au-
thors also developed the ProM framework [122], which is flexible with re-
spect to the input and output format of log files, and is also open enough to
allow for the easy reuse of code during the implementation of new process
mining ideas.

In another study conducted by Groth et al. [66], authors have proposed a
technique that can reconstruct provenance of the manipulations done over
the data in a provenance-unaware platform like excel sheet or a program-
ming tool like R. This approach used a library of basic transformations toGeneric

data
processing

infer and reconstruct provenance for a particular value. Since it requires
predefined possible transformations to reconstruct the data provenance,
this approach is not easy to apply in other platforms. In [113], authors
proposed a variant of R interpreter, CXXR, which can maintain and rep-
resent collected provenance information. Miles et al. [90] have proposed a
provenance collection mechanism by modifying the source code of a pro-
gram automatically. It provides fine-grained data provenance after execut-
ing the script. This mechanism has been demonstrated over Java programs.
In studies reported in [61, 23], authors have demonstrated their proposed
provenance collection mechanisms in context of Datalog programs.

There exist a few research on collecting provenance from specific pro-PriMe

gramming languages/tools which are typically do not provide any built-in
support for provenance collection and query, i.e., provenance-unaware plat-
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form. In this connection, Miles et al. have proposed a software engineering
methodology, known as Provenance Incorporating Methodology (PrIMe)
[92], that can adapt applications to make them provenance-aware by ex-
posing application information documented through a series of steps and
by modifying the application design.

Provenance can be defined at different levels of granularity. As an ex- Software
engineer-
ing

ample, provenance documented at workflow level only explicates the re-
lationship among different operations/activities. Similar work has also
been done in software engineering domain by facilitating static program
analysis. A program dependence graph (PDG) makes both the data and
the control dependences explicit for each statement in a program [41]. A
PDG can be used to describe an overview of a program. A system depen-
dence graph (SDG) extends the definition of a program dependence graph
and it is capable of providing data and control dependences for multi-
procedure programs [67]. One of the conceptual difference between work-
flow provenance and SDG/PDG is that workflow provenance explains the
relationships among activities in terms of data dependences only whereas
a PDG/SDG may have control dependences among activities.

Similar types of software engineering tools have been developed for
general-purpose programming languages like C, Python etc. Frama C2 is a Language

specific
tools

code analyzer developed for C programming language. It also supports the
concept of program slicing [130]. Angelino et al. have proposed StarFlow
[6] which can build a provenance trace at functional level for a Python pro-
gram. However, this tool can not explicate data dependencies within a func-
tion. There exists a tool called Sumatra3, developed for Python. It is a tool
for automated tracking of scientific experiments to achieve reproducible
results. There exist some other tools for analyzing Python programs4,5,6.
These tools can show call graphs based on a given Python program, i.e.,
dependency among different modules used in the script. However, neither
of these tools can provide complete data-driven relationships among dif-
ferent operations in a given Python program.

There are several existing work that extract provenance information from
a scientific model, developed in a provenance-unaware platform such as

2 Available at http://frama-c.com/
3 Available at https://pypi.python.org/pypi/Sumatra
4 Available at http://furius.ca/snakefood/
5 Available at http://pycallgraph.slowchop.com/
6 Available at http://www.tarind.com/depgraph.html
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generic data processing tools, general-purpose programming languages
etc. Studies reported in [90, 66, 113] capture provenance information from a
program developed in a provenance-unaware platform. These methods doSummary

not employ static program analysis techniques, used in software engineer-
ing and hence, can capture provenance only at the execution time. There
exist several other tools and packages, developed for Python, which can
produce dependency graphs showing functional/modular level dependen-
cies. It could be worth investigating to extract data dependencies between
different operations/activities without executing a particular program.

2.2 provenance representation and sharing

Based on the discussion in the previous sections, we have seen that the
provenance-aware systems have been addressed by different domains. As
a consequence, the representation of provenance might vary from one sys-
tem to another. To ensure seamless exchange of provenance information,
standardization of provenance representation and sharing methods is re-
quired. In this section, we discuss a few provenance representation meth-
ods facilitated by different applications and then describe the state-of-the-
art in connection with provenance representation and sharing.

Provenance has been represented in different ways. As an example, in
geographic information systems (GIS), there is a standard known as ISO
19115:2003

7 which defines the schema describing metadata, for geographicGML

information and services. This metadata schema can be translated into Ge-
ography Markup Language (GML)8, which is the XML grammar defined
by the Open Geospatial Consortium (OGC) to express geographical fea-
tures. GML serves as a modeling language for geographic systems as well
as it provides an open interchange format for geographic transactions on
the Internet. In another study, Yue et al. have proposed to facilitate XML
encoding to represent geospatial provenance data for better interoperabil-
ity [138].

Since provenance representation changes from one system to another,
it makes the exchange of provenance information between systems ex-Open

Provenance
Model

tremely difficult. The Open Provenance Model (OPM) [96, 98] is designed
for supporting interoperability between provenance systems. OPM allows

7 Available at http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020
8 Available at http://www.opengeospatial.org/standards/gml
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provenance information to be exchanged between systems, by means of
a compatibility layer based on a shared provenance model proposed in
[97]. The model defines a causality graph that consists of artifacts, processes,
agents and the causal relationships among these nodes. Artifacts denote
data products whereas processes represent a series of operations/activities
performed on artifacts and their execution produces new artifacts (data
products). Agents point to users/scientists who control the execution of
processes. To represent causal relationships between these nodes, OPM in-
troduces five primitive types of edges. An edge represents a causal depen-
dency, between its source, denoting the effect, and its destination, denoting
the cause. OPM has been designed to represent any kind of provenance,
even if it has not been produced by computer systems.

The Open Provenance Model (OPM) is further extended and realized
by a set of W3C provenance (PROV) specifications9, defining various as- W3C speci-

ficationspects of PROV. PROV-DM is the conceptual data model that forms a ba-
sis for the PROV family of specifications [95]. PROV-DM defines the core
concepts of PROV which are categorized as types and relations. There are
three PROV-DM types: entities, activities and agents. These PROV-DM types
are analogous to the nodes defined in OPM [98]. An entity is a physical,
digital, conceptual, or other kind of thing, either real or imaginary, with
some fixed aspects. Entities in PROV-DM are similar to artifacts in OPM.
An activity is something that occurs over a period of time and acts upon PROV-

DMor with entities, i.e., activities in PROV-DM are similar to processes in OPM.
An agent is something that bears some form of responsibility for an ac-
tivity taking place, for the existence of an entity, or for another agent’s
activity. Therefore, agents defined in PROV-DM is a super set of agents
defined in OPM. Furthermore, as core concepts of PROV, there are seven
PROV-DM relations which represent casual dependencies between PROV-
DM types. PROV-DM is a generic data model for provenance that allows
domain and application specific representations of provenance to be trans-
lated into such a data model and then enabling interchange between sys-
tems. Therefore, PROV-DM is domain and application agnostic. Heteroge-
neous systems can export their native provenance into such a core data
model. PROV includes other W3C specifications for different purposes.
PROV-O allows mapping of the PROV-DM to RDF (Resource Description
Framework) whereas PROV-CONSTRAINTS defines a set of constraints

9 Available at http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
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applying to PROV-DM. PROV-N defines notations of types and relations
in PROV-DM, represented in a human understandable form.

In this thesis, we mainly focus on the collection of provenance informa-
tion based on a scientific model. Therefore, we do not address this partic-
ular dimension of research in the field of provenance in this thesis. Never-
theless, we expect that the provenance information provided by the envi-
sioned framework could be exported to these standardized representation
techniques.

2.3 provenance applications

A study conducted by Simmhan et al. [114] narrated different applications
of provenance information. Provenance can be used to have reproducible
results. It becomes also useful for validating scientific models. Further-
more, provenance information can be facilitated to trace where data come
from and for other auditing purposes [91]. To debug the outcomes of a
scientific model and the model itself, provenance information could also
play a role. In this section, we primarily focus on the usage of provenance
information for debugging purposes.

In the software engineering domain, there are two common methods for
debugging: log-based debugging and breakpoint-based debugging. Log-Debugging

in software
engineer-

ing

based debugging inserts logging statements within the source code to pro-
duce an ad-hoc trace during program execution. Breakpoint-based debug-
ging consists in running the program under a dedicated debugger which
allows the programmer to pause the execution at determined points, in-
spect memory contents, and then continue execution step-by-step. Most of
the current IDEs (Interactive Development Environment) have a breakpoint-
based debugging feature. Both log-based and breakpoint-based debugging
require manual analysis of massive execution traces which is difficult and
not scalable. To overcome this drawback, Pothier et al. [105] have proposed
a scalable omniscient debugger, called Trace-Oriented Debugger for Java
(TOD), that makes it possible to navigate backwards in time within a pro-
gram execution trace, drastically improving the task of debugging com-
plex applications. in TOD, event traces (provenance) are explicitly stored
in a distributed database and therefore, it is very storage-expensive. A re-
cent study [134] on debugging aspect-oriented programs has argued that
some bugs in this programming paradigm could be difficult to detect,
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since aspect-oriented source code elements and their locations could be
transformed or even lost after compilation. In this study, authors have pro-
posed a debugger for aspect-oriented languages by facilitating an interme-
diate representation of the particular program to debug which preserves
all source-level abstractions so that the programmer could inspect the exe-
cution of all program elements in case of any bug reported.

Very recently, provenance information has been also used for debugging PANDA

[74]. In this study, Ikeda et al. have demonstrated Panda (Provenance and
Data), a system that supports debugging of data-oriented workflows and
drill-down to source data for a given output data. Panda documents prove-
nance information explicitly and it is not known that whether Panda can
handle data streams or not.

In this thesis, we emphasizes the application of provenance as a debug-
ging tool. Provenance defined at workflow level explains data dependen-
cies between activities which can be facilitated to detect any error in the
scientific model. Further, fine-grained data provenance could help scien-
tists to trace an output data product back to its source values if the output
seems to have an abnormal value. In this way, provenance could be used
as a potential tool for debugging at different levels.

2.4 relation to research questions

Several provenance-aware systems and models have been described in pre-
vious sections. Based on this discussion, we point out a few key observa-
tions in the context of the research questions (see Section 1.4) which are in
the center of the investigation in this thesis. These observations and their
consequence on our work are discussed below.

This thesis mainly focuses on three research questions. The first research
question, RQ 1, raises the concern on capturing workflow provenance of a
scientific model automatically.

RQ 1: How to capture automatically the workflow provenance of a sci-
entific model developed in a provenance-unaware platform at reduced
cost in terms of time and training?

Existing research and systems collecting provenance in the context of
a scientific data processing model are discussed in Section 2.1. From this
discussion, we have two major observations.
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Observation 1.1: Each scientific workflow engine supporting
provenance collection has its own set of constructs to design the
workflow of a scientific model. A few of them are also domain-
specific [102, 68].

Scientific workflow engines collect provenance at different levels of gran-
ularity - both workflow and fine-grained provenance [84, 115, 11, 24, 77, 63].
Scientists who would like to facilitate one of these systems, have to learn
the design constructs of that particular system which is a time consum-
ing task. Furthermore, these systems cannot extract workflow provenance
from a typical Java or Python program carrying out scientific experiments.
Therefore, a solution that can extract data-driven relationship between vari-
ables and operations within a program, i.e., workflow provenance, would
help the scientific community to manage provenance at reduced effort in
terms of time and training.

The second observation in connection with the RQ 1 is given below:

Observation 1.2: There exist a few systems that can extract
workflow provenance, i.e., data dependencies between activi-
ties, in a typical provenance-unaware platform such as general-
purpose programming languages, generic data processing tools
etc. Some of these techniques can collect provenance during ex-
ecution time only. The others can provide functional-level de-
pendencies instead of data dependencies.

Studies reported in [90, 113, 66] can extract provenance information
from programs/scripts developed in different provenance-unaware envi-
ronment such as Java, R, Microsoft Excel, respectively. These systems can
only extract provenance during the execution of the program. There are a
few other tools and packages developed for the Python programming lan-
guage which can extract functional-level dependencies by facilitating static
program analysis, discussed in Section 2.1.4. Since workflow provenance
explicates the data-driven dependencies between activities/operations in
a scientific model or in a program, neither of these solutions can extract
workflow provenance. Therefore, we would like to develop a method that
can extract workflow provenance from a given scientific model, consist-
ing of programs/scripts, automatically. In this thesis, we present workflow
provenance inference method applicable for Python.
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The RQ 2 highlights the practical challenge of collecting fine-grained
data provenance at reduced storage cost under different execution envi-
ronments.

RQ 2: How to infer fine-grained data provenance under different sys-
tem dynamics at reduced cost in terms of storage consumption?

Existing work collecting fine-grained data provenance are discussed in
previous sections. From this discussion, we point out the following obser-
vations.

Observation 2.1: Most of the existing solutions for tracing fine-
grained data provenance explicitly annotate provenance infor-
mation. Some of them also propagate provenance from one ac-
tivity to the next one [21, 131, 60, 56, 58].

Studies reported in [21, 131, 109, 28, 15, 60, 56, 46] are annotation-based
approaches to collect provenance in the light of database systems. More-
over, there exist some other work in the context of data streams which also
document provenance assertions/information explicitly [103, 129, 58, 108].
As we have already discussed in Section 2.1.2 and 2.1.3, provenance infor-
mation defined at tuple level, i.e., fine-grained data provenance, consume
a lot of storage space. Especially in cases of collecting provenance for data
streams, the storage overhead due to the explicit provenance collection
could be several magnitudes higher than the storage required by actual
data tuples. We reported this storage problem of maintaining fine-grained
data provenance in one of our earlier [69]. Therefore, in this thesis, we
would like to develop techniques that can infer fine-grained data prove-
nance to minimize storage cost.

The second observation pertaining to the RQ 2 is the following.

Observation 2.2: In stream data processing, several techniques
facilitate timestamps attached to data tuples as the key element
to derive dependencies between output and input data prod-
ucts.

As discussed in [8, 59], each data product in a stream is associated with
a timestamp. Several existing research facilitate this timestamp to express
data dependencies between input and output data products in streams
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[129, 103, 109, 58, 108]. In one of our initial ideas [69], we have also re-
ported the use of timestamps to establish dependencies between input and
output data products, i.e., fine-grained data provenance. We extend this
idea further and in this thesis, we present inference-based methods to ex-
tract fine-grained data provenance by facilitating timestamps of available
input and output data products.

Observation 2.3: A few systems address underlying system dy-
namics (e.g. processing delay) that refers to the erratic nature of
stream data processing. In these systems, the related parameter
such as processing delay is explicitly documented to achieve
accurate fine-grained data provenance.

System dynamics is defined as a set of parameters that could affect the
underlying data processing techniques. One of the parameters is processing
delay. In stream data processing, operations could have variable process-
ing delays that affects the generation of output data products. The other
parameter defined as a part of system dynamics is sampling interval, which
refers to the amount of time between arrivals of two successive data prod-
ucts in input streams. Variable sampling interval could affect the formation
of windows, consisting of input data products to be processed.

In the study reported in [108], the author proposed to document pro-
cessing delay explicitly as an additional attribute in output data products.
In this case, given an output stream element, stream ancestor functions can
map contributing input stream elements to that particular output stream
element by using timestamps of data products and annotated processing
delay. Documenting processing delay for each output data products in-
curs extra storage and processing overhead. To reduce the storage costs of
managing fine-grained data provenance trace, we would like to infer fine-
grained data provenance without explicit documentation of parameters
(e.g. processing delay) influencing system dynamics per output data prod-
uct. Furthermore, the envisioned inference-based methods do not store
any provenance record (provenance assertion) explicitly, which ensures
minimal storage overhead. It could be possible that in a few cases like
extremely delayed processing or highly irregular sampling interval, the
envisioned inference-based methods cannot infer accurate provenance in-
formation. In this thesis, we will elaborate this trade-off between storage
overhead and accuracy of provenance information.
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The last research question in this thesis, RQ 3, emphasizes the need of
a self-adaptable system that can choose the appropriate inference-based
method based on the given scientific model and current system dynamics
to infer provenance information.

RQ 3: How to incorporate the self-adaptability into the framework
managing data provenance at reduced cost?

In the context of this research question, we have the following observa-
tion.

Observation 3.1: A self-adaptable provenance management frame-
work has yet to be addressed by the research community.

Existing provenance-aware systems are developed to address a particu-
lar application or a particular settings. One of the goals in this thesis is
to achieve a generic framework to manage data provenance. To accomplish
this, we would like to introduce a suite of inference-based methods to infer
fine-grained data provenance. Each inference-based method should be suit-
able for a particular environment. To ensure optimal accuracy of inferred
provenance information, it is required to dynamically select the best-suited
inference-based method depending on the current system dynamics and
the characteristics of the scientific model. Therefore, a self-adaptability fea-
ture would nicely fit into the envisioned framework, selecting an optimal
solution.

In sum, we propose a framework inferring provenance information at
different levels of granularity in this thesis. We present a novel work-
flow provenance inference method that can extract workflow provenance
based on a given Python program, realizing a scientific computation. Then,
we propose a suite of inference-based methods to infer fine-grained data
provenance at different system settings. Our inference-based methods are
cost-efficient in terms of storage, time and required training. Finally, we in-
corporate a self-adaptability feature into our framework so that the frame-
work can select the most appropriate method autonomously based on cur-
rent system dynamics.

2.5 summary

The ultimate goal of this thesis is to develop a self-adaptable, inference-
based framework managing data provenance in a cost-efficient way. Since
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data provenance is at center of the investigation in this thesis, we reviewed
existing provenance literature.

Provenance is a widely studied topic. Provenance-aware systems and
prototypes are available in the context of scientific workflow, database,
stream data processing, e-Science applications etc. At the beginning of this
chapter, we discussed these existing systems and research in brief. During
the discussion, we also pointed out the limitations of existing approaches.

Representation and sharing of provenance is another important dimen-
sion of provenance research. We described state-of-art techniques in prove-
nance representation and sharing. Since the major investigation area in the
context of this thesis is the efficient extraction of provenance information,
we will not discuss much about adoption of these standards in the rest of
the thesis. We consider it as a potential future work. Moreover, we empha-
sized the use of provenance as a debugging tool. We cited examples from
software engineering domain where debugging could be very expensive
in terms of storage. Therefore, provenance information could be facilitated
while debugging scientific models, if it can be achieved at reduced storage
costs.

Next, we analyzed the existing work in the context of the research ques-
tions mentioned in this thesis. During the analysis, we made a few observa-
tions about the existing work. Based on these observations, we pointed out
the key characteristics of the envisioned provenance management frame-
work. We found that the automatic extraction of workflow provenance
based on a scientific model could be worth investigating. Furthermore,
most of the existing systems store explicit provenance records that in-
cur a considerable amount of storage overhead. Therefore, the proposed
inference-based methods, building fine-grained provenance traces without
explicitly documenting provenance records, could minimize this storage
overhead incurred by provenance data. We would like to also investigate
the effects of employing these inference-based methods over the accuracy
of inferred provenance information. Finally, we proposed to incorporate a
self-adaptable mechanism into the envisioned framework to have an op-
timal result in terms of storage consumption and accuracy based on the
given scientific model and system dynamics. The framework proposed in
this thesis, can provide a solid platform to scientists who want to manage
data provenance for their data intensive scientific computations.
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3
W O R K F L O W P R O V E N A N C E I N F E R E N C E

P rovenance information collected at different levels of granularity helps
scientists to validate a scientific model as well as to understand the ori-
gin of a data product with unexpected value. Workflow provenance expli-
cates the data-driven relationships between the activities within a scientific
model. One of the emerging applications of workflow provenance informa-
tion is that it can be used to debug a scientific model. Furthermore, work-
flow provenance can visualize the overall structure of a scientific model.

As discussed in Chapter 1, there exist several provenance-aware tools
and platforms that can collect workflow provenance automatically while
designing a scientific model. Scientists can facilitate these provenance-aware Challenges

platforms to capture workflow provenance of their scientific models. Each
of these tools has their own set of programming constructs and opera-
tors to define activities of a scientific model. Therefore, using a particular
provenance-aware platform requires extensive training effort for scientists,
which might also take a considerable amount of time.

Moreover, these scientists are an important but limited user group. An-
gelino et al. [6] reported that these scientists used to write programs/scripts
in a general purpose programming/scripting language. Later, they exe-
cute these programs to process the collected data and to generate output
data products. These programming languages have no built-in support
to collect provenance information and we refer to these model develop-

Part of this chapter is based on the following work: An Inference-based Framework to
Manage Data Provenance in Geoscience Applications. Accepted in IEEE Transactions on
Geoscience and Remote Sensing, IEEE Geoscience and Remote Sensing Society, 2013. (Impact
Factor: 2.895) & From scripts towards provenance inference. In Proceedings of the IEEE Inter-
national Conference on E-Science (e-Science’12), pages 118–127, IEEE Computer Society, 2012.
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ing platforms as provenance-unaware platforms. In a provenance-unaware
platform, scientists have to manually annotate provenance information of
their workflow which could become a tedious job if the scientific model is
large and complex and could take a lot of time.

Challenges of extracting workflow provenance in a provenance-unaware
platform are posed in the first research question (RQ 1) of this thesis, dis-
cussed in Section 1.4. To satisfy this research question, we propose to cap-Solution

ture workflow provenance automatically based on a given program which
is used for the actual processing. The proposed workflow provenance infer-
ence method infers the data dependencies between activities by interpret-
ing the source code of the given program. To accomplish that, the method
has to transform all control-flow based coordination between activities into
data-flow based coordination. Later, this workflow provenance can be fa-
cilitated to infer more detailed fine-grained provenance information. The
workflow provenance inference method puts minimal burden to the scientists
to capture workflow provenance of their scientific models developed in
a provenance-unaware platform automatically and therefore, this method
can save a significant amount of time. Furthermore, scientists need less
training effort to facilitate the proposed workflow provenance inference
method compared to other provenance-aware platforms.

In this thesis, we consider Python1 programs to showcase the proposed
method. However, one can easily adapt the general principles presented
in this chapter to develop such a tool for other provenance-unaware plat-
forms. In Chapter 9, we describe an automatic workflow provenance cap-
turing technique in the context of Answer Set Programming (ASP) based
on the general principles discussed in this chapter.

In this chapter, first, we describe a few core concepts of the workflow
provenance inference method including workflow provenance model and
its semantic alongside provenance representation scheme. Afterward, weChapter

structure present the overview of the workflow provenance inference method fol-
lowed by the example of building an initial workflow provenance graph.
Then, we introduce a set of re-write rules which are applied over the ini-
tial workflow provenance graph to transform its control dependencies into
data dependencies, thus achieving the workflow provenance graph. We
also evaluate the workflow provenance inference method on a collection
of the Python programs used by the scientists in several real-life projects.
Moreover, we briefly discuss the limitations of the method at its current

1 Available at http://www.python.org/

42

http://www.python.org/


3.1 workflow provenance model

stage followed by the summary of the workflow provenance inference
method.

3.1 workflow provenance model

The core concept of the workflow provenance inference method is the
workflow provenance model. The workflow provenance model defines dif-
ferent types of entities and their relationships with each other in a scientific
model. It represents the captured workflow provenance information as a bi-
partite graph, which we refer to as a workflow provenance graph. A workflow Bipartite

graphprovenance graph, Gw, is a set of (U,V ,E) where U denotes the set of ver-
tices/nodes representing data products participated in a scientific model,
V denotes the set of nodes representing activities/processing elements in
a scientific model and E denotes the set of directed edges between an ele-
ment in U and an element in V (or vice versa), representing a data-driven
relationship between these two nodes.

The set U is comprised of nodes, representing data products used in a
scientific model. The nodes in U can be classified into two categories.

• View: represents either any variable defined in the scientific model or
a result set/data products produced by a processing element.

• Constant: represents any constant value taking part in an activity/pro-
cessing element.

The set V consists of nodes, representing activities or processing ele-
ments within a scientific model. These nodes can be classified into two
types.

• Source Processing Element: represents an operation that either assigns
a constant value into a variable or an operation that reads/acquires
data from the disk or any other source.

• Computing Processing Element: represents an operation that either com-
putes a value/data product based on its parameters or writes data
products into a file, database etc.

The set E consists of directed edges connecting two nodes (one from U

and the other from V , or vice versa), representing data dependency be-
tween these two nodes. When there is a directed edge from a vertex uiεU
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Figure 3.1: Properties of different types of nodes in a workflow provenance graph

to a vertex viεV , it means that the view/constant ui contributes to the pro-
cessing of the source/computing processing element vi. On the other hand,
if there is a directed edge from a vertex vjεV to a vertex ujεU, it indicates
that the processing element (either source or computing) vj produces the
view (data products) uj.

Each type of aforesaid nodes has different properties. Figure 3.1 shows
the graphical representation of these nodes and also lists their properties.
In each node, there are several properties which are mandatory and the
others are optional. The set of mandatory properties is used to uniquely
identify a node as well as it describes key characteristics of a node based on
the discussion in Section 1.3. The set of optional properties can be used to
identify the exact data dependencies between these nodes, i.e., fine-grained
data provenance. Next, we discuss these properties of each type of nodes.

There are two types of nodes, representing data products (view/con-
stant), in the proposed workflow provenance model. A node representing
a view has a node identifier (ID) prefixed with ‘V’ based on current imple-
mentation, name and type. The type of a view node could be relational.View

Figure 3.1 also shows two important boolean properties of a view node.
These are: i) IsPersistent and ii) IsIntermediate. The IsPersistent property de-
scribes whether the data products hold by a view is stored persistently or
not. When IsPersistent=true, it means that data products hold by the view
is read from the disk or is written into the disk depending on the preced-
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ing processing element (either source or computing) and hence, is persis-
tent. Otherwise, the view is not persistent and thus IsPersistent becomes
false. The property IsIntermediate is true when the view is produced by a
computing processing element and contains an intermediate result. Other-
wise, IsIntermediate becomes false and it indicates that the view is created
to hold the value of a corresponding variable, defined in the program. Fur-
thermore, a view node has two optional properties: i) Value and ii) Line#.
The property Value specifies the actual value of data products hold by the
corresponding view. Line# refers to the line number in source code of the
program where the corresponding variable referred by the view (if any), is
defined.

Figure 3.1 also lists both mandatory and optional properties of a node,
representing a constant. A constant node has a node identifier (ID), a value, Constant

the type of the value (e.g. integer, string etc.). Based on the current im-
plementation, the id of a constant node always starts with ‘C’. A constant
node has optional Line# property which refers to the line number in source
code of the program where that particular constant is assigned.

As already mentioned, the category defining activities/processing ele-
ments has two types of nodes: i) source processing element and ii) com-
puting processing element. A node, representing a source processing element,
has a node identifier (ID), name, type and input-output ratio as mandatory
properties. In the current implementation, the id of a source processing el- Source

processing
element

ement always starts with ‘SP’. The type of a source processing element
node could be assignment, file name, database location etc. Furthermore,
a source processing element node has input-output ratio as another manda-
tory property which will be defined later.

Like a source processing element node, a node representing a computing
processing element has a node identifier (ID), name, type and input-output
ratio. The node id of a computing processing element is always prefixed
with ‘P’ based on the current implementation. The type of a computing pro- Computing

processing
element

cessing element node could be binary operation, function call, conditional
branching etc. A computing processing element node has input-output ratio
as another mandatory property. A source processing element node also has
this property. As already defined in Section 1.3.1, input-output ratio refers
to the ratio of the number of data products which contribute to produce
output data products over the number of data products produced by exe-
cuting a particular processing element. There are many operations where
this ratio remains constant during execution of the corresponding process-
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ing elements such as projection, aggregate functions in a database etc. We
refer to these activities as constant ratio activities/processing elements. As
an example, an aggregate function (e.g. average, sum etc.) always considers
all input data products to produce an output data product. Therefore, the
input-output ratio for the processing element representing aggregate func-
tion is n : 1 (‘many to one’) where n is the number of input data products
processed during execution. On the other hand, there are a few operations
which do not keep the input-output ratio constant during execution of the
corresponding processing element such as a typical selection operation in
a database. These are referred to as variable ratio activities/processing ele-
ments.

There is one property, hasOutput, which is used to differentiate between
a source and computing processing element. It is only applicable for a com-
puting processing element. The property hasOutput indicates whether re-
sult/data products produced by a computing processing element is stored
persistently, i.e., written into the disk, or not. If data products are stored
persistently, the value of hasOutput is set to true for the computing process-
ing element which produces that persistent data products. Otherwise, the
value of hasOutput of that corresponding computing processing element is
set to false.

Figure 3.1 also lists several optional properties of a processing element
node (both source and computing). Please note that, the list of optionalOptional

properties
of

Processing
elements

properties shown in Figure 3.1 is not a complete one. The listed properties
are the most important ones for a processing element to describe the na-
ture of the processing in terms of data dependencies. These properties are
discussed in the following.

• Window: A window specifies a subset of data products processed by
a processing element to produce an output data product. Therefore,
a window with a predefined size is applied over the input data prod-
ucts, i.e., views, to limit the number of data products to be consid-
ered by the processing element. Formulating a window requires to
define two properties: i) windowType and ii) windowSize. A window
could be defined based on the number of tuples, i.e., tuple-based
window (windowType=Tuple), or time units, i.e., time-based window
(windowType=Time). A window is defined per input view and the de-
fault value is 1 tuple.
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• Trigger: A trigger specifies when and how often a processing element
will be executed. Two properties are required to define a trigger for a
processing element. These are: i) triggerType and ii) triggerInterval. A
triggerType specifies how a processing element will be triggered for
execution. The value can be either tuple or time. A triggerInterval refers
to the interval (number of tuples of time units) between successive
executions of the same processing element. A trigger is defined per
processing element and the default value is 1 tuple.

There exist two other optional properties of a processing element node.
These are: startLine# and endLine#. Since the definition of a processing el-
ement could take multiple lines, startLine# and endLine# property refer to
the start and end line number of the definition of a particular processing
element in the source code of a given program, respectively.

3.2 workflow provenance model semantics

In the previous section (see Section 3.1), we have described different types
of nodes in a workflow provenance graph. A workflow provenance graph
explicates data dependent relationships between processing elements/ac-
tivities. Therefore, the coordination between different processing elements
is data-flow based [111] specifying that once a processing element is trig-
gered, the processing element processes data products hold by single/-
multiple input views which are the output of the preceding processing
elements. The size of input dataset per view is determined based on the
corresponding window defined over an input view. The trigger of different
processing elements are done in parallel, where each processing element
is performed based on a time or tuple-based trigger. For a time-based trig-
ger, at every point in time where the trigger predicate, consisting of trigger
type and trigger interval, is interpreted as valid, the processing element is
fired and output data products are produced. For a tuple-based trigger, it
is more difficult to predict when the next trigger will be enabled. Therefore,
the particular processing element continuously checks whether the set of
new data products observed at a specific time is sufficient to validate the
trigger predicate as true. In this case, the processing element is executed
and output data products are generated. Execution of processing elements
never stops as long as new data products arrive and the arrival of new
data triggers a processing element which is receiving the data.
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The aforesaid semantics of the proposed workflow provenance model
is quite similar to the computational model, known as dataflow process net-
works [82]. In dataflow process networks, each process (processing element)
consists of repeated firings (triggers) of a dataflow actor. When the actor
fires, it maps input tokens (input data products) into output tokens (out-
put data products). A sequence of such firings is a particular type of Kahn
process network [76]. By dividing processes into actor firings, dataflow pro-
cess networks overcomes the limitation of Kahn process network in which
processes (processing elements) are not allowed to test an input channel
(view) without consuming tokens (data products) resulting into a block
over other processes (processing elements).

However, there exist a few differences between a dataflow process net-
work and the semantics we use to define and execute a workflow. Based
on the aforesaid semantics of the proposed workflow provenance model,
a processing element can be executed based on the number of data prod-
ucts/tuples (tuple-based trigger) or a pre-defined time interval (time-based
trigger). In a dataflow process network, a dataflow actor can be fired based
on the number of input tokens only, i.e., no firing mechanism defined
based on time domain.

3.3 workflow provenance representation

In the proposed workflow provenance model, discussed in Section 3.1,
workflow provenance information is represented as a graph. Therefore, we
facilitate GraphML2, a XML-based file format for exchanging graph struc-
tured data, to represent provenance information. GraphML is supported
by most of the graph editing tools such as yEd3, Gephi4 etc. Therefore,
provenance graphs can be shared easily through out the scientific commu-
nity. Currently, we do not facilitate any standardized methods, discussed
in Section 2.2, to represent and share the workflow provenance. Since our
main purpose is to visualize the workflow provenance graph, we stick to
GraphML. In the future, we will extend the workflow provenance model ac-
cordingly to adopt the existing World Wide Web Consortium (W3C) prove-
nance specifications5.

2 Available at http://graphml.graphdrawing.org/
3 Available at http://www.yworks.com/en/products_yed_about.html
4 Available at https://gephi.org/
5 Available at http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
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3.4 overview of the method

3.4 overview of workflow provenance inference

The workflow provenance inference mechanism can infer workflow prove-
nance by analyzing a Python program. A typical Python program is com-
prised of assignments, arithmetic operations, user-defined function calls,
conditional branching, iterative operations etc. Some of these operations/ac-
tivities (e.g. assignment, arithmetic operations) exhibit data-flow based
coordination whereas the others exhibit control-flow based coordination
[111]. As an example, an assignment operation assigns a value (repre-
sented by either a view or a constant node) into a variable (represented
by a view). Therefore, the assignment activity shows data-flow based co-
ordination where availability of data products trigger the activity and the
workflow provenance graph can easily explicate the data dependency of
such type of activities.

On the other hand, activities such as user-defined function calls, condi-
tional branching, iterative operations etc. are implemented by using control-
flow based coordination and result into control dependencies between ac-
tivities. A control-flow based coordination maintains the dependence in Challenge

such a way that an activity is started only after the preceding activity has
been completed. As a consequence, variables defined or updated in an ac-
tivity are accessible after the activity has been completed. Therefore, con-
trol dependencies can be represented as data dependencies by creating dif-
ferent versions of the same variables involved in the activity. In particular,
a new version of a variable is created after its modification by an activity.
The control-flow determines which version of a variable will be used by a
read operation of an activity on that variable. Since workflow provenance
describes the data dependencies between activities, control dependencies
must be transformed into data dependencies to infer the workflow prove-
nance.

We start the inference mechanism by parsing a given Python program
based on a combined grammar, containing parser and lexer rules. After Solution

parsing the source code of the program, it returns an abstract syntax tree
(AST) of the given Python program. Then, we traverse through this AST
based on a tree grammar and for each node in the AST, an object of the ap-
propriate class based on the object model of the Python is created. Having
all the objects, we build the initial workflow provenance graph maintaining the
syntactic relationship between these objects including control-flow based
coordination.
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Since the initial workflow provenance graph preserves the control-flow
based coordination and contains some extra nodes due to the syntacticTransfor-

mation
function

sugar of the Python, it needs to be transformed in a form where the graph
exhibits data dependencies only and becomes more compact. To accom-
plish that, we apply a transformation function, consisting of a set of graph
re-write rules, called flow transformation re-write rules. Each re-write rule
in the set handles a particular operation/activity and transforms control
dependencies, found in the initial workflow provenance graph, into data
dependencies. The function contains a set of re-write rules capable of han-
dling conditional branching, iterative operations (looping), user-defined
function call as well as some Python oriented control structures.The trans-
formation function continues to apply re-write rules till no control depen-
dency can be found in the initial workflow provenance graph.

Later, we apply another function, called maintenance function, over theMainte-
nance

function
resulting graph after applying the transformation function. The mainte-
nance function contains a set of re-write rules, called graph maintenance
re-write rules. These re-write rules are not used to transform control de-
pendencies into data dependencies rather they are used to propagate the
persistent property of a view to the next view where applicable as well
as to identify the computing processing element producing persistent data
products.

Finally, we apply a compression function which consists of a set of graphCompres-
sion

function
compression re-write rules, to reduce the number of nodes by combining
nodes, representing views and constants with appropriate processing ele-
ment (both source and computing) nodes. All re-write rules in aforesaid
functions are executed one after another. After applying all these functions,
we get the workflow provenance graph.

We have used an off-the-shelf grammar6 as a starting point and extend
it according to our requirements to obtain the abstract syntax tree. We
also facilitate attributed graph grammar (AGG)7 which is a graph writing
engine to define re-write rules and transform the graph accordingly. We
also encode these graph re-write rules in a rule notation scheme, RuleML8,
to make it easier to implement these re-write rules in a different settings.
RuleML provides XML encoding of these re-write rules. An example is

6 Available at http://www.antlr.org/grammar/1200715779785/python.g
7 Available at http://user.cs.tu-berlin.de/~gragra/agg/
8 Available at http://ruleml.org/
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3.5 initial workflow provenance graph

given in Appendix A.1. In the next section, we discuss the mechanism of
creating an initial workflow provenance graph with the aid of an example.

3.5 initial workflow provenance graph

Building an initial provenance graph depends on the created objects based
on the object model of the Python and their syntactic relationship to each
other. As already mentioned, we build the initial workflow provenance
graph by facilitating AGG graph writing engine.

Figure 3.2 shows a sample program and the initial workflow provenance Program
descriptiongraph of the given program. In this program, the first two lines read two

files, ‘input1.txt’ and ‘input2.txt’, each containing a value and these
values are transformed into int type which are then assigned into the
variables a and b respectively. These variables are used in an addition op-
eration and the resultant value is then assigned into variable c in line 3. In
the next line, a is reassigned with the value 100. In line 5, the value hold
by c is written into a file named as ‘output.txt’, stored persistently.

In Figure 3.2, the source processing element nodes SP1 and SP2 represent
the read method which reads the input files containing a value. For each Example

method which is used for the first time, the user has to provide a few
information beforehand such as: whether a method reads data from disk
(true/false) and whether a method writes data into disk (true/false) to
make a distinction between source and computing processing elements.
For a read method, while the value of the former is true, the value of the
later is false. SP1 and SP2 produce two intermediate views, V1 and V4,
respectively. These views are used by computing processing elements P1
and P3 which transform the value hold by these views into integer type
and then the values are assigned into variables a and b represented by the
view nodes V3 and V6, respectively. These views participate in an addition
operation denoted by the node P5 which produces the result hold by an
intermediate view V7. The computing processing element P6 assigns the
view V7 into the variable c, represented by the view node V8. Afterward,
the processing element node P7 reassigns the variable a, represented by the
node V9 with the value 100, denoted by the constant node C3. Eventually,
the processing element node P8 is created to represent the write method
which writes the value hold by the view node V8 into the output file, stored
persistently into the disk. The nodes in Figure 3.2 also mention the value
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1  a = int(read(‘input1.txt’))

2  b = int(read(‘input2.txt’))

3  c = a+b

4  a = 100

5  write(‘output.txt’,c)

C1: 

input1.txt

(#1)

P1: 

int_cast

(#1)

V3: a

(#1)

V7
V8: c

(#3)

Sample code

P5: +

(#3)

P6: =

(#3)

C3: 100

(#4)

P7: =

(#4)

V9: a

(#4)
( This view will be used for the next read operation of ‘a’ )

SP1:

read 

(#1)

P2: =

(#1)
V2V1

C2: 

input2.txt

(#2)
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(#2)
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write

(#5)
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(#5)

V10

(#5)

Computing

Processing 

Element

Source

Processing 

Element

ConstantView

Figure 3.2: Example of the initial workflow provenance graph

of line number property(see Section 3.1), indicating the line in the program
from where that particular node is created. Since in this example definition
of both source and computing processing elements are limited to single
line, the graph shows only one line number per processing element.Handling

ordering
between

operations

All operations/activities in the given program exhibit data dependen-
cies. However, there is an implicit control dependency between the opera-
tions which determines the order of the execution of operations. Control
dependencies occurred due to the ordering between operations, are trans-
lated into data dependencies by correlating a variable read of an operation
to the latest version of that variable available along the control flow pre-
ceding the current operation. As an example, in line 3 when two variables
a and b are summed up, the processing element P5 reads the latest version
of both a and b which are hold by the views V3 and V6, respectively. Once
variable a is reassigned, the view V9represents the current version of a.
The view V9 will be used for any later references of variable a until it is
reassigned again. Therefore, the initial workflow provenance graph shown
in Figure 3.2 transforms the implicit control dependencies between oper-
ations/activities into data dependencies by introducing different versions
of the same variable based on their read and write sequences.

Other explicit control dependencies in an initial workflow provenance
graph must be also transformed into data dependencies so that the graph
could represent workflow provenance, i.e., relationship between activities
based on the availability of data. In the next section, we describe trans-
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formation function, consisting of a set of flow transformation re-write rules
to infer a workflow provenance graph by transforming control-flow based
coordination scheme into data-flow based coordination.

3.6 flow transformation re-write rules

The transformation function includes a set of flow transformation re-write
rules, transforming control dependencies into data dependencies. We de-
fine a re-write rule with two parts: left-hand side (LHS) and right-hand
side (RHS). Once a rule is defined and is executed, it searches for the iso-
morphic sub-graph equivalent to the sub-graph pattern mentioned in the
LHS of the rule. If the isomorphic sub-graph is found, it is replaced by the
sub-graph pattern mentioned in the RHS of the rule.

In this chapter, we consider six types of operations/activities involving
control dependencies: i) conditional branching (e.g. if-elif-else), ii) loop-
ing constructs (e.g. for) and iii) user-defined function/subroutine call (e.g.
passing parameters to a defined function and assigned the returned value
into a variable), iv) object instantiation of a user-defined class, v) exception
handling by try-except-finally block and vi) with statement. Please note
that, this is not a complete list of control-flow based operations available
in the Python programming language. However, these are the most com-
monly used control-flow based operations in Python.

3.6.1 Conditional Branching

Conditional branching refers to the execution of a set of statements only if
some condition is met. A conditional branching statement exhibits control-
flow based coordination and is translated into data-flow based coordina-
tion by correlating a variable read of an activity in a conditional branch to
the latest version of that variable available before the conditional branch-
ing language construct. All conditional branches are represented as paral-
lel data dependencies where each branch contains an additional activity
with variable ratio, i.e., selectively forwarding the data product based on
the condition. Then, all parallel branches are condensed into a single data
dependency again using a union activity.

LHS of Figure 3.3 shows the sub-graph pattern that could be found
in the initial workflow provenance graph if a conditional branching is
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P4:If-Elif-

Else Block
P2: else if

P1: if

P3: else

Vgiven

Pcomp1
out1

V1
out1

comparison 

value1

assigned 

value1

Vcomp1
out1

Pcomp2
out1comparison 

value2

assigned 

value2
assigned 

value3

Vcomp2
out1

V2
out1

V3
out1

P5:Union
P2

out1
: 

else if
Vgiven

Pcomp1
out1

V1
out1

comparison 

value1

assigned 

value1

Vcomp1
out1

Pcomp2
out1comparison 

value2

assigned 

value2

assigned 

value3

Vcomp2
out1

P1
out1

: 

if

P3
out1

: 

else

V2
out1

V3
out1

V
out1

Rule Conditional Branching (if-elif-else): LHS

RHS

V1
out1_initial

V2
out1_initial

V3
out1_initial

Pcomp3
out1

Vcomp3
out1

if Vgiven==comparison_value1:  

V
out1

 = assigned_value1

elif Vgiven==comparison_value2:

V
out1

 = assigned_value2

else:

V
out1

 = assigned_value3

Sample code

P6: =

P7: =

P8: =

P6: =

P7: =

P8: =

Computing

Processing 

Element

Source

Processing 

Element

ConstantView
Deleted Node

Added Node

Figure 3.3: Re-write rule for conditional branching

defined in a given program. In the initial workflow provenance graph,Pattern

a computing processing element (e.g. P1, P2, P3) is created for each of
these conditional branches. Except the processing element (P3) which is
used to represent the else branch, other processing elements (P1, P2) have
two parts: i) conditional part and ii) activity part if the condition is met,
connecting towards itself. For P1, the conditional part is originated from
the node comparison_value1 and the view Vgiven, i.e., if (Vgiven ==

comparison_value1). The node assigned_value1 is the origin of the ac-
tivity part which is then assigned into the variable Vout1, (Vout1 ==

assigned_value1), if the condition is met. The same pattern could be
found for elif branches. However, the else branch defines only the ac-
tivity part if all other conditions are not met. Therefore, P3, representing
else branch, has the activity part only which assigns assigned_value3
into Vout1. Due to these conditional branches, Vout1 may hold different
values depending on the condition that is satisfied. Therefore, we denote
different versions of Vout1 as the view nodes V1out1, ... , Vnout1 where n
is the total number of conditional branches in the current scope.

To transform the control dependencies into data dependencies in a con-
ditional branching statement, we use the concept introduced in a program
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representation graph [67]. In a program representation graph, after every Transfor-
mationconditional branch one extra node is added to represent the output vari-

able to follow static single assignment forms [31]. Therefore, in the RHS
of Figure 3.3, we replace the nodes V1out1, V2out1, V3out1 with the nodes
V1
out1_initial, V2out1_initial, V3out1_initial, representing the potential

value to be assigned if that particular branch satisfies the condition. After
checking the condition, the value could be assigned to any of these nodes
V1
out1, V2out1, V3out1. Therefore, they have been placed after P1, P2, P3

respectively. Moreover, an explicit conditional part, connected towards P3
(else branch), must be added to transform control dependencies into data
dependencies successfully. Therefore, a processing element Pcomp3out1

which takes the output of the conditional part from other branches as input
and produces output of the conditional part for the else branch, is added.
Pcomp3

out1 performs a NOR operation over its input data. Therefore, if
all other conditions are false, it will produce true as output allowing the
activity part of else branch to perform activities.

Several activities could be carried out if a particular condition is met.
Therefore, each processing element is decomposed into multiple instances
where each instance of the same processing element handles exactly one
activity and produces the corresponding output. In the RHS of Figure 3.3,
processing elements P1out1, P2out1 and P3out1 represent the instance of
P1, P2 and P3 respectively, created for handling the assignment activity of
the variable Vout1. Depending on the condition, only one of these nodes:
V1
out1, V2out1 and V3out1, actually holds the value of Vout1. Therefore,

we add an union processing element to capture the data available in one
of these nodes and the union processing element produces the view Vout1.
RHS of Figure 3.3 shows the pattern after the transformation. The light and
dark shaded nodes in Figure 3.3 represent the deleted and added nodes,
respectively.

A sample program having a conditional branching block and the corre- Example

sponding initial workflow provenance graph is shown in the top part of
Figure 3.4. First, the given program asks the user to choose either ‘+’ or
‘-’. Depending on the choice, the program then launches the conditional
branching block which either adds or subtracts two variables a and b and
the result is assigned into variable c.

The top part in Figure 3.4 shows the initial workflow provenance graph
exhibiting explicit control dependencies due to the conditional branching.
Executing the aforesaid re-write rule first identifies an isomorphic sub-
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Figure 3.4: After applying the re-write rule for conditional branching on the given
graph

graph equivalent to the LHS sub-graph pattern. This isomorphic sub-graph
consists of nodes within the surrounding rectangle shown in the top part
in Figure 3.4. The re-write rule replaces the found sub-graph with the one
mentioned in the RHS of the re-write rule. The light and dark shaded
nodes in Figure 3.4 represent the deleted and added nodes, respectively.
The processing elements P7_c and P10_c have variable input-output ratio
whereas the processing element P11_c, representing union operation, has
constant ‘many to one’ input-output ratio. All processing elements have de-
fault trigger interval of 1 tuple and all associated views have default win-
dow size of 1 tuple.

3.6.2 Looping Constructs

In any programming language, loops could be used for different purposes.
We identify two major operations of looping constructs. First, loops could
be used for iterating over input data products only. As an example, the
usage of a loop to iterate over several input files falls into this category.
The other usage of a loop is to manipulate input data products to produce
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new output data products. As an example, the usage of a loop to produce
running sum over a defined range of data tuples, executing at a fixed in-
terval, falls into this class. In the former case, the trigger interval of the
activity performing the looping operation is 1 time unit and the window
size of views involved with that activity is also 1 time unit. The time unit
depends on the period over which data are collected (e.g. hourly, daily,
monthly, yearly basis). In the later case, a loop which manipulates input
data products and produces new data products, can be implemented in
several ways. The activity realizing a loop could either facilitate a special
data structure like ring buffer to produce a result or define a conditional
statement within its body based on which it performs the intended opera-
tion (e.g. conditional loop). The loop could be also used to produce a result
from a given set of data products in an incremental manner (e.g. sum of
elements in an array). In each aforesaid case of using loops, the activity,
realizing a loop, shows control-flow based coordination which has to be
transformed into data-flow based coordination by inferring the window
size of associated views and trigger interval of the activity.

Please note that, we address only two cases of using a loop in this section.
First, we describe the case where a looping construct is used to iterate over
input files (data products). Second, we explain the mechanism of inferring
data dependencies from a loop which produces a result by manipulating a
set of input data products in a straightforward way, i.e., without involving
any condition or a special data structure.

Loop iterating over input files (data products)

LHS of Figure 3.5 shows the sub-graph pattern that could be found in Pattern

the initial workflow provenance graph if the given program has a looping
construct iterating over files (data products). Based on the sample code
shown in Figure 3.5, each iteration of the loop reads an input file (e.g.
‘sampleFile_1’, ‘sampleFile_2’ etc.) based on the value of the loop con-
trol variable, i (view V2). The view V2, referring to loop control control
variable i, is produced by the processing element P2, representing the de-
fined for loop. P2 controls the value of the loop control variable, i, based
on the outputs of range function (P1) which are hold by view V1. V1 con-
tains the values ranging from start (inclusive) to end (exclusive) based on
the given increment value (incr). In this case, the loop control variable i,
represented by V2, is used only by a source processing element (SP1) that
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C1: start

C2: end
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C1: start

C2: end
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Figure 3.5: Re-write rule for a loop that iterates over files (data products)

reads input files, consisting of data products. Later, input data products
are assigned into the view V3 which has an outgoing edge to P2, exhibit-
ing control-flow based coordination.

From the pattern depicted in LHS of Figure 3.5, we can see that the loop
control variable (V2) is only used to read a set of input files (data prod-
ucts), but is not used to manipulate them. However, there exists controlTransfor-

mation dependencies between activities reading a particular input file, i.e., first,
read ‘sampleFile_1’ and then ‘sampleFile_2’ and so on. To transform
such control dependencies, we need to remove the processing element re-
ferring to the loop, P2, and the corresponding loop control variable V2
from the sub-graph pattern shown in LHS of Figure 3.5. Removing these
nodes allows the source processing element (SP1) to take one value/tuple
at a time from V1 as input which determines the input file to be read and
thus transforms control dependencies into data dependencies. RHS of Fig-
ure 3.5 shows the data dependencies after the transformation where the
execution of SP1 only depends on the available data products in V1. In this
case, the window size defined over V1 is 1 time unit. The trigger interval
of SP1 is 1 time unit and the input-output ratio is ‘one to one’.

A sample program having a looping construct and the corresponding ini-
tial workflow provenance graph is shown in the top part of Figure 3.6. TheExample

given program iterates over a set of input files, i.e., ‘month_1’, ‘month_2’
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Figure 3.6: After applying the re-write rule for a loop iterating over files (data
products) on the given graph

and so on, to read data products inside those files. The read method per-
forms this file read operation, denoted by the source processing element
SP1, based on the loop control variable i (V2) and the appropriate input
file, i.e., ‘month_i’, represented by the constant node C4. Later, SP1 as-
signs data products of an input file which has been read into variable
monthlyData, represented by the view node V3.

Applying the aforesaid re-write rule on the initial workflow provenance
graph shown in the top part in Figure 3.6 transforms the control depen-
dencies occurred due to the looping constructs into data dependencies
and the transformed graph is shown in the bottom part in Figure 3.6. The
re-write rule finds the isomorphic sub-graph equivalent to the LHS of the
rule shown by the nodes within a surrounding rectangle in Figure 3.6. The
rule replaces this sub-graph pattern with the one which is mentioned in
the RHS of the rule. The transformed graph is now data dependent where
the source processing element SP1 has trigger interval of 1 time unit and
input-output ratio of ‘one to one’. The window defined over V1 has size 1
time unit.

Loop manipulating input data products and producing new data products

LHS of Figure 3.7 shows the sub-graph pattern that could be found in the
initial workflow provenance graph if a loop is used to manipulate input
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Figure 3.7: Re-write rule for a loop that manipulates data products

data products to produce new data products. In Figure 3.7, P2 representsPattern

the loop and V2 is the view node created for representing the loop control
variable, i. P2 controls the value of the loop control variable, i, based on the
outputs of range function (P1) which are hold by view V1. V1 contains the
values ranging from start (inclusive) to end (exclusive) based on the given
increment value (incr). In this case, a processing element Pmanipulation
manipulates input data products based on the value of the loop control
variable i (V2) and produces new data products. The processing element
Pmanipulation and other processing elements within the processing chain
could be executed several times and thus they exhibit control-flow based
coordination.

We can transform control dependencies into data dependencies by infer-
ring not only window size defined over views, contributing to Pmanipulation
and other processing elements in the chain but also the trigger interval of
appropriate processing elements in the chain. A window size refers to theTransfor-

mation subset of data products within a view, participating in an activity. In this
case, the first two parameters of the range function (P1), start (inclusive)
and end (exclusive) define the boundary [start, end), of the values hold
by the loop control variable i. Since the loop control variable i is facilitated
by Pmanipulation and other subsequent processing elements in the chain
to manipulate input data products, the window size of participating views
in the processing chain is end−start. The last parameter incr refers to the
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Figure 3.8: After applying the re-write rule for a loop manipulating data on the
given graph

increment of the value of i and thus, it represents the trigger interval of
the manipulating processing element Pmanipulation and other successive
processing elements in the chain. The processing elements enclosed within
the rectangle in RHS of Figure 3.7 have the inferred window size and trig-
gers. The input-output ratio of these processing elements depends on the
nature of their processing.

The top part in Figure 3.8 shows an initial workflow provenance graph Example

which is created based on a given program with a looping construct, pro-
ducing a sum value by manipulating data products in an array, named as
data. First, the given program initializes the array, data and the variable,
sum. Afterward, the program executes a looping constructs that iterates
over data products within the array data to calculate the sum of all data
products. The processing element node P5 represents the defined loop and
the view node V4 represents the loop control variable i. The boundary of
the values of i starts from the value 0 (inclusive) to 5 (exclusive) and is
incremented by 1 after the end of every iteration depending on the param-
eters given to the range function (P6).

The initial workflow provenance graph shown in the top part in Figure
3.8 does not show the initialization of data array, represented by V1, to
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reduce the complexity of the graph. As we can see from the top part in
Figure 3.8, V4 is connected to the processing element node P3 which is
used to select a particular data product from the defined array data. The
index of the selected data product depends on the loop control variable,
i.e., P3 selects ith element from the array data. Please note that, P3 has
a constant input-output ratio (‘one to one’) unlike a selection operation ap-
plied over a view in a database. Later, the selected data product data[i],
represented by V5, contributes to the addition operation, represented by
P4. P4 takes one data product from data array at a time as input, calcu-
lates a sum of these values incrementally and assigns the computed value
into variable sum, represented by V6. Therefore, P4 maintains control-flow
based coordination during its execution.

Applying the aforesaid re-write rule on the initial workflow provenance
graph transforms control dependencies occurred due to the looping con-
structs into data dependencies. The transformed graph is shown in the bot-
tom part in Figure 3.8. The re-write rule finds the isomorphic sub-graph
pattern equivalent to the LHS of the rule (see top part in Figure 3.7), as
shown by the nodes within a surrounding rectangle in top part of Figure
3.8. It replaces this sub-graph with the one which is mentioned in the RHS
of the rule (see bottom part in Figure 3.7). In this case, the processing el-
ement P4 has trigger interval of 1 tuple/data product and the window
size defined over the view V5 is 5 tuples which is calculated based on the
parameters of the range function, represented by P6.

3.6.3 User-defined Function/Subroutine Call

A function or subroutine call executes a set of statements defined in the
body of the function and afterward, the flow of control usually returns
to the activity which calls that particular function. In this case, the suc-
cessful execution of the caller activity and other activities to be executed
after the caller activity depends on the successful completion of the activ-
ities defined within the function body. Therefore, a function call exhibits
control-flow based coordination between activities.

To transform the control dependencies into data dependencies in a user-Pattern

defined function call, we replicate the nodes found inside the function
body into the place where the caller activity calls the function. LHS of
Figure 3.9 shows the sub-graph pattern for a function call which could be
found in the initial workflow provenance graph. The user-defined function
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Figure 3.9: Re-write rule for a user-defined function/subroutine call

Fname is defined and later in the code it is called. The processing element
P5 represents the caller activity and passes input parameters, represented
by param1 and param2 nodes, to the function Fname, denoted by the pro-
cessing element P4. P6 connects the caller P5 to the function body hold by
P4.

To transform control dependencies into data dependencies, we introduce
two specific activities: paramIn and return. The paramIn activities take pa- Transfor-

mationrameters from the caller P5 as input and then connects them to the param-
eters mentioned in the function definition hold by P4. Then, the processing
chain defined within P4 is replicated. The return activity takes the returned
value from the function if there is any and assigns the value into the view
V1 with IsIntermediate=false. Otherwise, it assigns an intermediate value
into V1 (IsIntermediate=true). RHS of Figure 3.9 shows the pattern after the
transformation.

The top part in Figure 3.10 shows a sample program having a user- Example

defined function call and the corresponding initial workflow provenance
graph. The given program includes a user-defined function, named as add,
which takes two input parameters: x and y. The function add calculates the
sum of these two values and returns the value to the caller activity. The
main body of the program calls the function add with the values 10 and 5
and assigns the return value into variable a.

The initial workflow provenance graph shown in the top part in Figure
3.10 bridges the caller activity/processing element P5 and the called activ-
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Figure 3.10: After applying the re-write rule for a user-defined function call on
the given graph

ity/processing element P4 (the node holds the body of the function), by
introducing the node P6 in between them. Once the aforesaid re-write rule
is applied over this initial workflow provenance graph, the rule detects a
match to its LHS sub-graph pattern. It then introduces the nodes P8 and
P9, representing the paramIn activity, which take the constant nodes C1
and C2, representing the value 10 and 5 and assign these values to the
nodes within the function body, V1 and V2, respectively. From this point
onwards, the nodes within the function body are replicated and placed
accordingly till the node P3 is reached, representing the return activity
within the function. The replicated nodes also include the Line# property
just after the node identifier, i.e., P1#5, indicating the line number in the
main body of the program where the caller processing element calls the
function. Eventually, by introducing the node P10, representing the return

activity from the function, the return value is assigned into view node V6,
representing variable a. In this case, the trigger interval is 1 for all process-
ing elements and the window size of associated views is also 1. However,
the input-output ratio of the processing elements defined in the function
must be given by users before starting the execution of workflow prove-
nance inference method because the input-output ratio of a user-defined
function cannot be inferred by analyzing the given program.
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Figure 3.11: Re-write rule for an object instantiation of a user-defined class

3.6.4 Object Instantiation of a User-defined Class

Python supports object-oriented programming where a class can be de-
fined and the object, instance of the class, can be instantiated. Instantiating
an object of a particular class is accomplished by executing the construc-
tor method of the class, after which the control flow returns to the caller
activity. In Python, the constructor method is usually known as _init_.
The successful execution of the caller activity and other activities to be
executed after the caller activity depends on the successful completion of
the constructor of the class instantiating an object of that class. Therefore,
object instantiation of a user-defined class exhibits control-flow based co-
operation between activities.

LHS of Figure 3.11 shows the sub-graph pattern for an object instantia- Pattern

tion activity, represented by the processing element P5. Similar to the LHS
sub-graph pattern shown in Figure 3.9, P5 passes input parameters, repre-
sented by param1 and param2 nodes, to the _init_ function (denoted by
P3) of the class defined by P4. P6 connects the caller activity/processing
element P5 to the class definition hold by processing element P4.

RHS of Figure 3.11 shows the transformed graph that exhibits data de-
pendencies between processing elements. We follow the same approach Transfor-

mationwhich transforms control dependencies occurring due to a function/sub-
routine call into data dependencies as discussed in Section 3.6.3. The paramIn
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activities take parameters from the caller P5 as input and then connects
them to the parameters mentioned in the __init__ function defined within
the body of the class, represented by P4. Then, the input parameters are
assigned into the instance variables of the class represented as Vself.p1
and Vself.p2. The _init_ method assigns these values into the view V1

which represents the instantiated object of the class Cname. In Figure 3.11,
the default trigger interval is 1 for all processing elements and the default
window size of associated views is also 1. The input-output ratio of object in-
stantiation activity/processing element (P9) is n : 1 where n is the number
of parameters to the constructor method.

Another type of statements which exhibits control dependencies is ac-
cessing a member function of a particular class. Since this statement also
operates in a similar fashion as the object instantiation does, the re-write
rule to transform the control dependencies occurred due to this statement
is same as the aforesaid rule shown in Figure 3.11. Therefore, it is not
discussed here. However, unlike object instantiation processing element,
the input-output ratio of the processing elements representing the function
must be given by users beforehand.

The top part in Figure 3.12 shows source code of a given program with
the example of object instantiation of a particular class followed by the
example of accessing a member function of the same class in line 8 and 9

respectively. The first 7 lines are used to define the class person which hasExample

two instance variables: self.first and self.last, representing the first
and last name of a person, respectively. Furthermore, the class definition
also contains a member function show which concatenates the first and last
name of an object of type person class and returns the value to the caller
activity/processing element.

The top part in Figure 3.12 also shows the initial workflow provenance
graph created for the given program. The processing element node P10
represents the object instantiation of the class person in the main body of
the program. The caller activity is represented by the node P9 and the class
person is represented by the node P8. These three nodes are surrounded
by a rectangle with solid line in the top part in Figure 3.12, representing
the LHS sub-graph pattern shown in Figure 3.11. Applying the re-write
rule over this initial provenance workflow graph results into the nodes
surrounded by a rectangle with solid line, depicted in the bottom part in
Figure 3.12.
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Figure 3.12: After applying the re-write rule for an object instantiation on the
given graph

Moreover, the given program also contains a caller activity, denoted by
the node P12, which calls the member function show, represented by the
node P4. The nodes surrounded by a rectangle with dashed line in the
top part in the Figure 3.12 represent this activity. The control dependen-
cies in the initial workflow provenance graph (top part in Figure 3.12) can
be transformed into data dependencies by applying the re-write rule as
shown in Figure 3.11. After the transformation, it results into the nodes
surrounded by a rectangle with dashed line in the bottom part in Figure
3.12. The provenance graph shown in the bottom part in Figure 3.12 is the
transformed graph for the given program.
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finally:
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Sample code

V2
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VexceptPexcept
 (processing chain for 
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VfinallyPfinally
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Pop
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Computing
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ConstantView
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Figure 3.13: Re-write rule for Exception Handling using try-except-finally
block

3.6.5 Exception Handling using try-except-finally block

It is possible to write a Python program that can handle selected excep-
tions using try, except and finally keywords. In such type of a Python
program, the try block contains a set of statements that will be executed
by the program. If an exception is raised during the execution, the set of
statements within the except block is executed as a fail-safe approach. Even-
tually, the set of statements defined within the finally block is executed
irrespective of whether an exception is raised or not. Statements inside a
finally block can also update variables defined within corresponding try

block. Furthermore, execution of a statement/activity within an except

block depends on a specific condition that is triggered by executing state-
ments within corresponding try block. Therefore, the activities defined
within these blocks exhibit control-flow based cooperation.

LHS of Figure 3.13 shows the sub-graph pattern that could be found inPattern

the initial workflow provenance graph in case the given program contains
any exception handling block. The processing element node P4 represents
the complete try-except-finally block, consisting of statements within
try, except and finally block, represented by processing elements P1, P2
and P3, respectively.
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If an exception is raised by one of these statements within the try block,
the intended result of the program cannot be achieved and thus, the pro-
gram execution becomes unsuccessful. Since a workflow provenance graph Transfor-

mationrepresents the data dependencies of a successful program execution, we de-
cide not to consider the case when an exception is raised. Therefore, the de-
fined re-write rule, depicted in Figure 3.13, only considers the statements
within the try and the finally block and transforms control dependencies
into data dependencies within these two blocks. The re-write rule replaces
any isomorphic sub-graph equivalent to the LHS of the Figure 3.13 with
the sub-graph pattern mentioned in the RHS of Figure 3.13. As already
mentioned, only the nodes associated with the try and the finally block
retain in the transformed graph.

An alternative approach to deal with the except block could be repre-
senting activities within an except block as a parallel branch to the ac-
tivities defined within corresponding try block which is similar to the
approach taken to represent conditional branching statements (see Sec-
tion 3.6.1). This alternative approach could be more useful to examine a
situation where an exception is raised so that debugging becomes easier.
However, the resulting workflow provenance graph produced by this alter-
native approach could be larger and more complex to understand in some
cases where the except block is comprised of many statements.

Figure 3.14 shows a sample program with an exception handling block
and the corresponding initial workflow provenance graph and the trans-
formed provenance graph after applying the re-write rule. In the given Example

program, two variables a and b, represented by the nodes V1 and V2, are
assigned with the values 12 and 3, denoted by the constant nodes C1 and
C2, respectively, shown in the top part in the Figure 3.14. In the try block,
the program calculates the division of these two variables and assigns the
outcome into variable c, represented by the view node V3. If the aforesaid
operation raises any exception such as divide by zero error, the statement
within the except block will be executed. Eventually, variable c is reas-
signed with the value 0 in finally block.

The bottom part in the Figure 3.14 shows the transformed graph after
applying the aforesaid re-write rule, depicted in Figure 3.13. As discussed
in the re-write rule, only the nodes associated with the try block, and
the finally block retain and the other nodes are deleted from the trans-
formed graph. Since, variable c is reassigned within finally block, the
updated version of c is represented by view V5. Later, if any activity/state-
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(#4)
V4

P3: /
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V5: c

(#8)

P7: =

(#8)

C3: 0

(#8)

Before applying the re-write rule:

After applying the re-write rule:

1 a = 12

2 b = 3

3 try:

4    c = a/b

5 except:

6    print 'Error'

7 finally:

8    c = 0

Computing

Processing 

Element

Source

Processing 

Element

ConstantView
Deleted Node

Added Node

(This view will be used for the next read operation of ‘c’)

Figure 3.14: After applying the re-write rule for exception handling using try-
except-finally block on the given graph

ment wants to access variable c, view V5 will participate in that particular
activity. All processing elements in Figure 3.14 have default trigger inter-
val of 1 tuple and all associated views have default window size of 1 tuple.
The input-output ratio depends on the nature of the processing.

3.6.6 Handling with statements

The Python programming language incorporates with statement from ver-
sion 2.7. The with statement is used to wrap the execution of a block with
methods defined by a context manager which handles the desired runtime
context for the execution of that block of code. In other words, a with state-
ment guarantees to enter the _enter_ method (a runtime context) defined
within the scope of the object to bind this method’s return value to the
target specified in the as clause of the statement, if any. It also guarantees
to call the _exit_ method (another runtime context) defined within the
context of the object to ensure that irrespective of whether an exception is
raised by the block defined within the with statement or not, the program
continues to execute the statements found within the scope of the _exit_
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P1: withPas:asVexpr Vvar

Rule with statements : LHS

RHS

VotherPother
 (processing chain for 

statements inside body)
...

...

Pas:asVexpr Vvar

VotherPother
 (processing chain for 

statements inside body)
...

...
Penter:e

nter
Vint1

Pexit:

exit
Vint2

with expr as var:

… … … # body inside with 

Sample code

Computing

Processing 

Element

Source

Processing 

Element

ConstantView
Deleted Node

Added Node

Figure 3.15: Re-write rule for handling with statements

method. As an example, a with statement can be used with a file object to
ensure the closing of the file in case of a raised exception or not.

Since, a with statement calls at least two member functions- _enter_

and _exit_, it exhibits control dependencies which has to be transformed
into data dependencies. Figure 3.15 shows both LHS and RHS of the re- Patter &

Transforma-
tion

write rule handling a with statement. LHS of Figure 3.15 depicts the sub-
graph pattern which is to be matched with any isomorphic sub-graph in
the initial workflow provenance graph. If an isomorphic graph equivalent
to this pattern is found, the corresponding part is replaced by the sub-
graph pattern shown in RHS of Figure 3.15. In the RHS, two processing
element nodes, Penter and Pexit, and their corresponding output view
nodes Vint1 and Vint2, are added for the _enter_ and the _exit_ method
respectively assuming that the body of these methods is not defined in the
given program. However, if the body of these methods are defined within
the given program, we apply the re-write rule for a user-defined function
call, shown in Figure 3.9 in the next step. Since the use of a with statement
is very rare, we do not provide any sample program and its corresponding
initial workflow provenance graph and transformed graph.

3.7 graph maintenance re-write rules

After applying the transformation function, consisting of a set of flow trans-
formation re-write rules, over the initial workflow provenance graph, the
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maintenance function is applied next. The maintenance function contains
a set of re-write rules, called graph maintenance re-write rules. This set of re-
write rules are defined to ensure the propagation of persistence of views
from one to another as well as to discard unnecessary intermediate views
followed by the assignment processing element. Furthermore, one of the
rules in this set helps scientists to identify the computing processing ele-
ment which generates persistent output data products.

Figure 3.16 shows three graph maintenance re-write rules. The first re-Propagat-
ing

persistence
of views

write rule, GM 1, propagates the persistence of a view to the next one
if some conditions hold. This re-write rule ensures that if scientists use
Python methods such as read to read input data products from persistent
storage and to assign this data into a variable, the corresponding view
created for the variable will be also persistent (IsPersistent=true). LHS of
the re-write rule GM 1 in Figure 3.16 shows the sub-graph pattern for such
an activity. The intermediate view V1 is produced by the read method and
contains persistent data. Later, the persistent data hold by V1 is assigned
into a variable represented by V2 through the processing element node P1.
In this case, the value of IsPersistent property of view V1 is propagated
towards view V2 and V2 becomes also persistent (IsPersistent=true). RHS
of the rule GM 1 in Figure 3.16 shows the updated property of V2. The
nodes with updated property values are highlighted with a dark shade,
applicable for all graph maintenance re-write rules.

Rule GM 2 minimizes the size of the workflow provenance graph. ItDiscarding
intermedi-

ate
views

deletes all intermediate views (IsIntermediate=true) and subsequent assign-
ment process nodes (name = ’=’) if they are followed by a view representing
a variable defined in the program, i.e., (IsIntermediate=false). It has two vari-
ants depending on the type of the node which produces the intermediate
view (either a source processing element, SP1 or a computing processing
element, P1) shown in the LHS of rule GM 2.a and GM 2.b, respectively
in Figure 3.16. Executing these re-write rules, discards the light-shaded
nodes from the initial workflow provenance graph and makes a connec-
tion between SP1 and V2 as well as between P1 and V2 for the rules GM
2.a and GM 2.b, respectively.

Rule GM 3 identifies the computing processing element which generatesIdentifying
processing

element
produced

output

a persistent result, i.e., the result that is written into the disk. In Python,
there are a few methods such as write, report which write data into the
disk. However, these methods do not compute the data rather they write
the data produced by another processing element. Therefore, the process-
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Computing
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Element

ConstantView
Deleted Node
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Figure 3.16: Re-write rules for graph maintenance

ing element which produces the data that is written into the disk later, is
the computing processing element generating persistent output. LHS of
the rule GM 3 in Figure 3.16 shows the sub-graph pattern for the aforesaid
activities. P2 is the processing element representing the method like write

or report and generates a view node V2 which refers to the data written
into the disk. Before this activity takes place, P2 had taken V1 as input
and V1 is a non-intermediate view, indicating that V1 represents a defined
variable in the program which contains the data written by P2. Therefore,
the processing element P1 which produces V1 is the computing processing
element having persistent output data. It is represented by hasOutput=true
value. RHS of the rule GM 3 in Figure 3.16 shows the processing chain
with the updated values of relevant properties.

The outcome of the actual execution of these graph maintenance re-write Step-by
step trans-
formation

rules are shown in Figure 3.18. First, the initial workflow provenance graph
created for the given Python program shown in Figure 3.2 is depicted in
Figure 3.17. In Figure 3.17, the view nodes V2 and V5 are both intermediate,
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Figure 3.17: Initial workflow provenance graph (before applying graph mainte-
nance re-write rules)

but are persistent as both nodes contain the result of the read method, rep-
resented by the source processing element nodes SP1 and SP2 respectively.
The values hold by these intermediate and persistent views are assigned
into the view nodes V3 and V6. Since these nodes used to represent the
defined variables in the given program, they are non-intermediate (IsIn-
termediate=false) and by default are non-persistent (IsPersistent=false) also.
This information on the nodes properties will be used to apply the first
graph maintenance re-write rule GM 1 that propagates the persistence of
views from one to the other.

Applying the re-write rule GM 1 over the initial workflow provenance
graph shown in Figure 3.17, updates the value of the IsPersistent property
of nodes V3 and V6 from false to true. The provenance graph after apply-
ing this re-write rule is shown in Figure 3.18a.

Next, the re-write rule GM 2 is applied over the provenance graph shown
in Figure 3.18a. This re-write rule discards intermediate views followed
by a processing element performing an assignment operation. In Figure
3.18a, there are three isomorphic sub-graphs which are equivalent to the
sub-graph pattern mentioned in the LHS of the re-write rule GM 2.b (see
Figure 3.16). These are: i) P1 → V2 → P2 → V3, ii) P3 → V5 → P4 → V6

and iii) P5 → V7 → P6 → V8. Therefore, applying the aforesaid re-write
rule discards the nodes V2, P2 and V5, P4 and V7, P6 for the first, second
and third isomorphic sub-graph, respectively. The provenance graph after
applying this re-write rule is shown in Figure 3.18b.
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(c) After applying the re-write rule, GM 3

Figure 3.18: Step-by-step transformations of the initial workflow provenance
graph

Finally, the last re-write rule among this set of graph maintenance rules,
GM 3, is applied over the provenance graph shown in Figure 3.18b. In
Figure 3.18b, the node P8, representing the write method, produces a view
V10, which is persistent as the result hold by this view is written into the
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disk. Since the node P8 only takes the value hold by the view node V8 as an
input the re-write rule GM 3 concludes that the processing element node
P5 is the node which actually produces a result, that is made persistent
afterward by P8. Therefore, applying this rule updates the value of a few
properties of the node P5 and V8. The hasOutput of P5 becomes true as well
as the IsPersistent of V8 also becomes true. The transformed provenance
graph is shown in Figure 3.18c. This provenance graph will be considered
by the next re-write rules if available.

3.8 graph compression re-write rules

Finally, we execute the compression function, consisting of a set of graph
compression re-write rules, over the initial workflow provenance graph.
The main purpose of applying graph compression re-write rules is to re-
duce the number of nodes in the initial workflow provenance graph.

In the proposed workflow provenance model, described in Section 3.1,
the workflow provenance graph, represented as a bipartite graph, has two
major types of nodes. These are: i) data products, represented as view
and constant nodes and ii) activities/processing elements, represented as
source processing element and computing processing element nodes. Since
the workflow provenance graph is a bipartite graph, no two data products
as well as no two processing elements can be connected together. This prop-
erty of a workflow provenance graph can be facilitated to reduce the size
of a workflow provenance graph in two ways. First, a constant node which
acts as an input to a source/computing processing element node, can be
unified with the corresponding processing element and then, the constant
node will be discarded from the graph. Second, a view node which is pro-
duced by a source/computing processing element can be unified with the
corresponding source/computing processing element and afterward, the
view node will be deleted from the graph. To ensure that no information
is lost, we copy the properties of the output view or input constant nodes
to the corresponding source or computing processing element node. This
mechanism triggers a change of representing the workflow provenance
model to reduce the complexity of the workflow provenance graph and to
increase the readability. However, the model itself is not affected by this
change in representation.
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Figure 3.19: Re-write rules for graph compression

Therefore, to apply these graph compression re-write rules, we change
the representation of the workflow provenance model and the new rep-
resentation has two types of nodes: i) source processing element and ii)
computing processing element. Both source and computing processing el-
ements include properties of constant and view nodes so that we can copy
these values of constants and views to the corresponding properties in the
corresponding processing element.

Figure 3.19 shows all four graph compression re-write rules. Rule GC Unifying
input
constants

1 unifies a constant node with the following source processing element
and deletes the constant node. If a match is found, the rule GC 1 copies
all properties of the constant node C1 to the corresponding properties of
the source processing element node SP1 and deletes the constant node C1
eventually. Since several constant nodes might be connected with the same
source processing element, the source processing element maintains an
array or a list for keeping the values of all constant node properties. Rule
GC 2 unifies a constant node with the following computing processing
element node. The computing processing element also maintains an array
of values of the constant nodes properties.

The other two rules, GC 3 and GC 4, unify a view node with the preced- Unifying
output
view

ing computing processing element and source processing element node,
respectively and discard the view node. Rule GC 3 and GC 4 also ensure
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write rules)

Figure 3.20: Transformation to the Workflow provenance graph

that the outgoing edges from the view node, i.e., e1, ..., en, are now con-
necting from the respective processing elements. Figure 3.19 also shows
the copied properties of constants or a view node into the corresponding
source/computing processing element node. Please note that, in Figure
3.19, the list of copied properties only contains mandatory properties of a
constant or a view node. In practice, all properties including optional ones
are copied while applying graph compression re-write rules.
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Figure 3.20 shows an example of applying these graph compression re-
write rules over a given provenance graph. The initial workflow prove- Example

nance graph shown in Figure 3.2 has been considered to apply the graph
maintenance re-write rules discussed in Section 3.7. After applying these
rules, the outcome is shown in Figure 3.18c. This provenance graph is con-
sidered for applying the graph compression re-write rules to infer the final
workflow provenance graph.

Figure 3.20a shows the input provenance graph over which the graph
compression re-write rules are applied. According to these re-write rules,
all constants and views will be unified with the corresponding source and
computing processing element nodes and the properties of those constant
and view nodes are copied into the processing element nodes to ensure no
loss of information. In Figure 3.20a, there are 7 processing elements. There-
fore, applying the model modification re-write rules will return the final
workflow provenance graph with 7 nodes. The final workflow provenance
graph is shown in Figure 3.20b alongside the properties of deleted constant
and view nodes which are now copied into the corresponding source and
computing processing element nodes.

After applying all these re-write rules, we have the workflow prove-
nance graph. Figure 3.20b shows the workflow provenance graph after
being transformed from the initial workflow provenance graph shown in
Figure 3.2. The workflow provenance graph is significantly more compact
than the initial one and it also transforms all control dependencies into
data dependencies.

3.9 evaluation

The goal of the workflow provenance inference is to capture workflow
provenance information automatically for a scientific model that has been
developed in a provenance-unaware platform such as a scripting environ-
ment, general purpose programming languages like Python, Java etc. In
this chapter, the workflow provenance inference method is demonstrated
over Python programs. One of the design factors of the workflow prove-
nance inference method is that the method will be generic in nature as
discussed in Section 1.4. The generic nature of the workflow provenance
inference method refers to the capability of handling Python programs
with different types of programming constructs. Therefore, the main eval-
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uation parameters are: i) applicability and ii) accuracy of the workflow prove-
nance inference method. Furthermore, we would like to keep the workflow
provenance graph as compact as possible to increase the readability of the
graph. Therefore, we also measure the compactness ratio of the workflow
provenance graph and we consider compactness ratio as the third evalua-
tion parameter.

Applicability refers to the percentage of Python programs which can be
handled by the workflow provenance inference method and as a result, a
workflow provenance graph can be generated. Accuracy refers to the percent-Evaluation

parameters age of programs for which the generated workflow provenance graph is
accurate. Accuracy of a workflow provenance graph is determined by ex-
perts in Python programming. Experts compare a Python program and
the corresponding workflow provenance graph line by line. A workflow
provenance graph is considered to be an accurate one, if the captured
provenance graph can show the exact relationship between variables (data
products) and operations (activities) for each line of the program. Other-
wise, the workflow provenance graph for that program is considered as
an inaccurate one. Since the accuracy is determined by means of manual
checking, the accuracy reported in this section is approximate. The last
evaluation parameter, compactness ratio refers to the ratio of the total num-
ber of nodes between the initial workflow provenance graph and the final
workflow provenance graph. This parameter can be a rough indicator of
the performance of the rewrite-rules in terms of reducing the graph size.

3.9.1 Test cases

We collect Python programs from three different sources. The first setPrograms
source of programs are used in the Data2Semantics9 project. In this project, re-

searchers are developing approaches that enable scientists to more easily
publish, share and reuse data. The set of Python programs that we present
as test cases for this evaluation, are used for converting raw data such as
comma-separated values (csv), tab-separated values (tsv) and other cus-
tom formats into RDF10 triples and for managing a triple store as well. We
consider 14 Python programs from this toolset which are also available
online11.

9 Available at http://krr.cs.vu.nl/author/data2semantics/
10 Available at http://www.w3.org/TR/rdf-concepts/
11 Available at https://github.com/Data2Semantics/raw2ld/tree/master/src
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Figure 3.21: Distribution of programs based on their size (in number of lines)

We also collect two other Python programs used from two other research
groups. One of the programs estimate the total water demand on the global
level used by the hydrologists in the Utrecht University, The Netherlands.
The other program is collected from one of our colleagues in the University
of Zurich, Switzerland. This program is used for data manipulation such
as barometric pressure and air temperature and the program generates a
file with metadata.

In total, we present 16 Python programs as test cases for the evaluation.
This collection of programs is diverse in nature as they are used in different Programs

sizedomains. The size of the programs in lines of code also varies from 34 to
991, with average size of around 200 lines of code. Figure 3.21 shows the
distribution of programs size in terms of number of lines.

All these programs contain most primitive assignment and arithmetic
operations as well as built-in/library function calls. A majority of the Programs

typeprograms contain conditional branching and looping constructs. Table 3.1
shows the break down for different types of statements found in the col-
lection of programs used in this evaluation.
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Table 3.1: Different types of statements found in the collection of programs

type of statements percentage of total programs

Conditional branching 88%

Looping constructs 88%

User-defined function call 44%

Object Instantiation 19%

try-except-finally block 13%

with statements 7%

3.9.2 Applicability and Accuracy

We use all 16 Python programs in the evaluation to measure the applicabil-
ity and the accuracy. Among these 16 programs, the workflow provenanceApplicabil-

ity inference method is applicable to all programs and the method infers the
corresponding workflow provenance graphs. Therefore, the applicability of
the workflow provenance inference is 100%. This high applicability of the
inference mechanism is achieved because of its capability to address most
of the Python programming constructs. However, there are a few valid
Python statements for which the inference mechanism cannot generate the
provenance graph due to the limitation of the facilitated Python grammar
in the implementation. As an example, the statement a = b = c is a valid
Python statement given that a value is already assigned to c. The workflow
provenance inference method cannot handle this statement. However, de-
composing this statement into the following statements can overcome this
problem: b = c and a = b.

Next, we determine the accuracy of the workflow provenance inference
method. To calculate the accuracy, inferred workflow provenance graphsAccuracy

have to be checked manually by experts in Python programming. An accu-
rate workflow provenance graph captures the exact relationships between
variables (data products) and operations (activities) for each line in the cor-
responding program. However, it becomes a tedious and a time consum-
ing task to check the generated provenance graphs manually especially
for programs with more than 2 levels of nested compound statements (e.g.
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Figure 3.22: Distribution of programs (with accurate provenance graphs/outside
the scope) based on their size (in number of lines)

conditional branching) exhibiting control-flow based coordination. There-
fore, we narrow down the scope of our experiments. We only consider
the programs which have at most 2 levels of nested compound statements
to measure the accuracy. We have found that there are 10 programs sat-
isfying this criterion. Then, the workflow provenance graphs of those 10
programs are generated and are manually checked by experts in Python
programming. We find all 10 provenance graphs are accurate.

Figure 3.22 shows the distribution of programs with accurate workflow
provenance or programs falling outside the defined scope based on their
size in number of lines. From Figure 3.22, we observe that all 10 programs
considered during the accuracy calculation process have less than 200 lines
of code. The other 6 programs outside the scope of the experiment, have
more than 200 lines of code.

3.9.3 Compactness Ratio

Compactness ratio is a rough indicator of the performance of the re-write
rules used in the workflow provenance inference method in terms of reduc-
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Figure 3.23: Compactness ratio of accurate workflow provenance graphs for cor-
responding programs in ascending order

ing the graph size. The size of a workflow provenance graph is calculated
by only considering the total number of nodes in that graph. It is quite
common that the size of a provenance graph can be enormous especially if
the graph is created by analyzing a program due to the syntactic details of
the programming language. In such a case, it becomes difficult to interpret
the provenance graph for a scientist which could limit the application of
the provenance graph. Therefore, one of the key design factors during the
inference of workflow provenance graph is that the final workflow prove-
nance graph should be compact in size.

Compactness ratio is measured by calculating the ratio between the to-
tal number of nodes in the initial workflow provenance graph and the
workflow provenance graph. To measure this parameter, we consider the
10 accurate workflow provenance graphs and their corresponding initial
workflow provenance graphs.

Figure 3.23 shows the compactness ratio of 10workflow provenance graphs
in ascending order. The minimum compactness ratio is 2.02 : 1 which
means that the size of an initial workflow provenance graph is at least
2 times bigger than the size of a workflow provenance graph. The maxi-
mum compactness ratio achieved is 3.92 : 1. The average compactness ra-
tio measured over these 10 workflow provenance graphs and initial work-
flow provenance graphs is 3.19 : 1. In general, the graph re-write rules
can reduce the initial workflow provenance graph size by more than 66%
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Table 3.2: Summary of the compactness ratio of the workflow provenance graphs

Minimum compactness ratio 2.02:1

Maximum compactness ratio 3.92:1

Average compactness ratio 3.19:1

when transformed into the final workflow provenance graph. The max-
imum compactness is achieved for the program which has only a few
compound statements such as conditional branching and looping. On the
other hand, the minimum compactness is achieved for the program which
has higher number of statements exhibiting control-flow based operations.
Therefore, from this observation, we can conclude that if the program has
comparatively fewer explicit control dependencies, the compactness of the
final workflow provenance graph will be higher than the average. Table 3.2
summarizes the results.

3.10 discussion

The proposed workflow provenance inference method can capture work-
flow provenance based on a given Python program automatically. We ar-
gue that the general principle of this method can be extended to address
other scripting and programming languages such as MATLAB12, R13, An-
swer Set Programming [52] etc. Furthermore, we think that the workflow
provenance inference method can infer provenance information with the
limited amount of knowledge available on the programs which are used
to realize a scientific model. However, there exist a few limitations of the
workflow provenance inference method which is discussed in this section.

3.10.1 Platforms having Coordination between Users/Components

The proposed workflow provenance inference method is demonstrated
over Python programs. However, the core idea of the proposed approach

12 Available at http://www.mathworks.nl/products/matlab/
13 Available at http://www.r-project.org/
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is independent of the used programming language. It is to automatically
translate a control-flow coordinated program into a data-flow coordinated
program. The mechanisms to perform this transformation as proposed in
this chapter are limited to certain control-flow based coordination mech-
anisms like conditional branching, looping, modularization etc. However,
we do not address coordination mechanisms including interaction between
multiple users, components using messages instead of function calls, which
are often done in Business Process Execution Language (BPEL).

3.10.2 Interpretation of Provenance Graphs

The workflow provenance inference method infers workflow provenance
by static analysis of the program. One of our main purposes to develop this
inference method is to put minimum burden to the users to achieve prove-
nance information. However, acquired workflow provenance does not ex-
plicate the semantics of activities and data products. The user has to in-
terpret and understand the meaning of the processing steps and the used
data products. If semantic information, like e.g. metadata of the sources
and their data structure, is available then this may help the user interpret-
ing the provenance graph, but it is not part of the provenance graph as
addressed in this chapter.

The approach is most beneficial to a user when there is little of the avail-
able data actually used for the calculation of an individual result, but these
data originate from many different sources. The less sources are involved
and the more data contributes to an individual result, the bigger the prove-
nance graph gets and therefore the harder it is for the user to interpret the
provenance graph and get useful information out of it.

3.10.3 Nested Iterative Activities

The proposed workflow provenance inference method can transform con-
trol dependencies, occurring due to a conditional branching or an itera-
tive operation, into data dependencies. Currently, the method handles one
looping operation/activity at a time and infer the window size and trigger
interval of this activity based on the input parameters given to that looping
activity. However, we do not consider the plausible dependencies between
multiple nested looping. Due to this nested iterative structure, sometimes
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the properties (e.g. window size, trigger etc.) of an inner loop can influ-
ence the properties of an outer loop. Identifying these influences requires
in-depth analysis of involved control structures and possibly manual anno-
tations. The workflow provenance inference discussed in this chapter does
not address this problem. This is a potential future work to improve the
workflow provenance inference method.

3.10.4 Recursive Functions

The workflow provenance inference method does not support any recur-
sive function. The biggest challenge of handling recursive functions is to
figure out the exact data-flow based coordination between associated activ-
ities. Since same variables with different values are used at different stages
of a recursive function, it is difficult to transform control-flow based coor-
dination into data-flow based coordination. Furthermore, it is also difficult
to identify the end of execution of a recursive function without interpreting
the values of participating data products. The ability to handle recursive
functions is another future work that can enhance the proposed workflow
provenance inference method.

3.11 summary

The workflow provenance inference method, presented in this chapter,
can capture workflow provenance automatically based on a given pro-
gram. This method becomes useful for collecting provenance traces for
scientific models which are built in a provenance-unaware platforms like
Python programming language. The first research question, RQ 1, intro-
duced this challenge of extracting workflow provenance automatically in a
provenance-unaware platform. Therefore, the workflow provenance infer-
ence method answers the first research question, RQ 1.

At the beginning of this chapter, we introduced the workflow prove-
nance model which is one of the core concepts in the proposed workflow
provenance inference method. Based on this model, we represented work-
flow provenance information as a bipartite graph, consisting of two types
of nodes - data products and activities, and edges representing data de-
pendencies between these nodes. Later, we explained the data-flow based
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semantics between nodes in a workflow provenance graph followed by the
discussion on the provenance representation scheme used.

Next, we explained the workflow provenance inference method. First,
the method parses a given Python program to get an abstract syntax tree
(AST) of that program. Afterward, objects of the appropriate class based
on the object model of the Python are created by traversing through the
AST. Having all the objects, the initial workflow provenance graph is cre-
ated. The initial workflow provenance graph might exhibit control depen-
dencies. Therefore, a set of functions are applied over the initial workflow
provenance graph to achieve a more compact, data dependent provenance
graph, called workflow provenance graph. First, we apply transformation
function, consisting of some graph re-write rules. These re-write rules
transform all control dependencies into data dependencies. Next, main-
tenance and compression functions, consisting of other re-write rules are
applied over the graph to achieve the final workflow provenance graph.
The workflow provenance graph we inferred by applying these re-write
rules, can explicate data dependencies between activities and data prod-
ucts found in the given program.

Our evaluation shows that the proposed workflow provenance inference
method is applicable to a wide variety of Python programs which en-
sure its generic nature. The proposed method captures accurate workflow
provenance graphs for all test cases considered. The generated workflow
provenance graphs are more compact than the corresponding initial work-
flow provenance graphs. In average, the method can reduce the size of an
initial workflow provenance graph by 66% of its original size.

The general principles of the workflow provenance inference method
can be extended and adapted to build a similar tool for other scripting
and general-purpose programming languages. Furthermore, the workflow
provenance inference method infers workflow provenance information with
minimal prior information. This method can save a lot of time and effort
of scientists who currently manage provenance of their experiments us-
ing other provenance-aware systems. Currently, the method does not han-
dle recursive functions and does not address plausible dependencies in a
nested iterative structure. We would like to address these operations in
future to improve the proposed method.
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4
B A S I C P R O V E N A N C E I N F E R E N C E

The workflow provenance of a scientific model can either be created and
stored by using provenance-aware workflow engines, stream processing
engines, complex event processing engines [84, 116, 102, 24, 8, 2, 3] or
be captured automatically as discussed in Chapter 3 in case the model
is developed using a general purpose programming tool such as Python.
The workflow provenance of a scientific model provides the relationship
among different operations at the design phase as discussed in Section
1.3.1. However, it cannot provide the provenance information during the
execution of that scientific model.

Therefore, we need a mechanism that can achieve fine-grained data
provenance, i.e., the relationship between data products generated during
the execution of the model. Fine-grained data provenance can be used as
a means of debugging the model to validate it as well as it allows to have
reproducible results. Therefore, efficient management of fine-grained data
provenance is of utmost importance to the scientific community especially
to the scientists handling massive, continuous data streams.

Fine-grained data provenance can be explicitly documented and stored
in a database during the execution of a scientific model. This is a feasi-
ble approach for a small amount of manually sampled data because the
storage space consumed by provenance information remains constant and
does not accumulate over time which is the case in stream data processing.

This chapter is based on the following work: Inferring Fine-Grained Data Provenance in
Stream Data Processing: Reduced Storage Cost, High Accuracy. In Database and Expert Sys-
tems Applications (DEXA’11), volume 6861 of LNCS, pages 118–127. Springer, 2011. & Fa-
cilitating fine grained data provenance using temporal data model. In Proceedings of the
Workshop on Data Management for Sensor Networks (DMSN’10), pages 8–13. ACM, 2010.
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To process data streams, a processing element is continuously executed
on a subset of the data stream, also known as a window. Executing a pro-Challenges

cessing element defined over a window, requires to document fine-grained
data provenance at each window execution to have a complete provenance
trace. The provenance trace allows scientists to debug as well as to repro-
duce results. If the window is large and subsequent windows have signifi-
cant overlaps with each other, a particular input data product contributes
to several output data products. These relationships between the input
data product and multiple output data products need to be maintained in
form of fine-grained data provenance. Therefore, the size of provenance
data becomes a multiple of the size of the actual data stream. Since prove-
nance data is another type of metadata and not frequently accessed by
users, the explicit documentation of fine-grained data provenance seems
to be too expensive and infeasible [64, 69].

Furthermore, documenting fine-grained data provenance explicitly re-
quires operator instrumentation that explicitly adds a few lines of code into
the actual model itself to capture provenance [45]. This technique has been
used in the ES3 project providing computational provenance [44]. However,
a drawback of operator instrumentation is the need to extend all operators
which exist in a model and thus, is a time consuming task.

Therefore, managing fine-grained data provenance in a cost-efficient man-
ner in terms of storage and time is one of the key questions which need
to be satisfied to develop a framework managing data provenance. It isSolution

also addressed as one of the research questions (RQ 2) in this thesis, men-
tioned in Section 1.4. To satisfy the research question RQ 2, we propose
several methods to infer fine-grained data provenance to ensure cost effi-
ciency. These inference-based methods can infer fine-grained data prove-
nance based on the workflow provenance of the scientific model and the
timestamps attached to the data products. Each of these methods has
it’s own pros and cons and is suitable for a particular set of system dy-
namics which includes input data products arrival pattern, processing de-
lay etc. The suite of these inference-based methods to infer fine-grained
data provenance makes the proposed provenance management framework
more generic. A detailed guideline on the suitability of these inference-
based methods is discussed in Chapter 7.Basic

provenance
inference

In this chapter, we discuss the basic provenance inference method. The ba-
sic provenance inference method is applicable to both data streams and offline
(non-stream) data products . It can handle input data streams with regular
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and constant arrival pattern. The basic provenance inference method also
assumes that the processing time required to execute a processing element,
called processing delay, is constant. In cases with different system dynam-
ics than the aforesaid one, the basic provenance inference method might
provide inaccurate provenance information.

This chapter is structured in the following way. First, we present a sce- Chapter
structurenario based on a real project followed by the description of the example

workflow associated with the scenario. Next, we describe a few basic con-
cepts used to explain the basic provenance inference method. The overview
of the basic provenance inference method is presented afterward. Then, we
discuss the required information to be needed by the underlying system
to execute this inference-based mechanism followed by the explanation of
the working principle of the basic provenance inference method. Eventu-
ally, we evaluate this method based on the example workflow presented
before followed by the discussion on the applicability of this inference-
based method in different situations.

4.1 scenario description

RECORD1 is one of the projects in the context of the Swiss Experiment2,
which is a platform to enable real-time environmental experiments. One
objective of the RECORD project is to study how river restoration affects
water quality, both in the river itself and in the groundwater [110].

Figure 4.1 shows the overview of the scenario. As depicted in Figure Example

4.1, different types of input data products are acquired by several sensors
which have been deployed to monitor river restoration effects. The type of
input data products may vary from high resolution infrared image to a sim-
ple data tuple depending on the type of sensors. In this scenario, there are
a few sensors measuring electrical conductivity of water which is a mea-
sure of the number of ions in the water. Increasing conductivity indicates
the higher level of salt in water. Since scientists are interested to control
the operation of a drinking water well by facilitating the available sensor
data, this data stream of electrical conductivity is sent for the processing.
The data processing mechanism provides output data products which is a

1 Available at http://www.swiss-experiment.ch/index.php/Record:Home
2 Available at http://www.swiss-experiment.ch/
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Input data products

Contributing input 

data products

Data processing Output data product Scientists

Fine-grained 

provenance request

Abnormal/

unexpected value
Analyzes output

Figure 4.1: Scenario overview

contour map representing electrical conductivity in a known region of the
river as shown in Figure 4.1.

As depicted in Figure 4.1, scientists could analyze the output data, i.e.,
a contour map, and in case of any abnormal or unexpected value exists in
the map, they could request the derivation history of that particular output
data, also known as fine-grained data provenance. The provenance request
results into the set of input data products that contribute to produce the
selected output data. The provenance information can be used as a means
to debug the outcome of a scientific model as well as to validate the model.

4.2 workflow description

To explain and evaluate the basic provenance inference method, we con-
struct an artificial and simplified workflow in the light of the scenario dis-
cussed in Section 4.1. We assume that a region of the river is divided into
3×3 grid cells. Further, we also assume that there are three sensors measur-
ing electrical conductivity in three different cells. Sensors send data tuples
containing the device id, the latitude and the longitude of the device,
the measured electrical conductivity, the timestamp of the measure-
ment, also referred to as valid time [79], along with some other attributes.
Scientists use these conductivity readings to compute an approximate elec-
trical conductivity for all cells in the grid using a spatial interpolation oper-
ation. Later, based on the scenario, a contour map of electrical conductivity
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Figure 4.2: The example workflow

for that region is produced. Scientists can request the provenance of any of
the points within the map if the value hold by that point seems abnormal.

As introduced in Chapter 3, a scientific workflow can be represented as
a graph, known as workflow provenance graph. A workflow provenance
graph has different types of nodes - i) constants, ii) views, iii) source pro-
cessing elements and iv) computing processing elements as mentioned in
Section 3.1. The definitions and notations of these nodes are used to repre-
sent the aforesaid workflow which is depicted in Figure 4.2.

In Figure 4.2, for each sensor, there is a corresponding source processing
element named SP1, SP2 and SP3 which reads these data tuples and stores
the data tuples in view V1, V2 and V3, respectively. Later, these views act Example

as inputs to the computing processing element P4 which executes an union
operation, i.e., combining all available data tuples, and produces a view V4

as output. This view acts as an input to the computing processing element
P5. P5 computes the interpolated values for all cells of the grid using the
values sent by the three sensors and stores the interpolated values in the
view V5. All views holding data tuples in Figure 4.2 are persistent views
(IsPersistent=true), i.e., data tuples are never deleted. Later, the view V5 is
used by the Visualization processing element to produce a contour map of
the electrical conductivity. The shaded part of the workflow in Figure 4.2
is considered to evaluate the basic provenance inference method. Further-
more, for comprehensive evaluation, we also replace P5 with other relevant
computing processing elements executing different operations and report
the results in Section 4.7.
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4.3 basic terminology

In the previous section, we described a simple and artificial, scientific work-
flow as shown in Figure 4.2. The scientific workflow exhibits data-flow
based coordination, i.e., a particular processing element will be executed
based on the availability of input data products, similar to the semantics
of the workflow provenance model, discussed in Chapter 3. Executing this
scientific workflow produces output data products and the proposed ba-
sic provenance inference method can infer fine-grained data provenance
of a selected output. The basic provenance inference method can reduce
storage overhead to maintain provenance data especially in cases when a
single input data product contributes several times, producing multiple
output data products. The aforesaid situation often occurs while process-
ing data streams. Therefore, the understanding of the concepts associated
with stream data processing such as windows, triggers, sampling interval,
processing delay is important. In this section, we restate the definitions of
different types of nodes which exist in the example workflow shown in
Figure 4.2 along with the related terminology like windows, triggers etc.
Furthermore, we introduce the notations used for this terminology which
are used to explain the working principle of the basic provenance inference
method.

As defined in Section 3.1, a view represents either any variable defined
in the scientific model or a result generated by a processing element. FromViews

Database point of view, these variables can hold a set of tuples (e.g. a list).
Furthermore, in the context of data streams, new data products/tuples can
be added into the list referenced by a variable. Therefore, a view Vi can be
defined as a set of tuples tji where j is the transaction time [79]. Transaction
time, j refers to the system timestamp indicating the point in time when
the tuple is inserted into the view Vi. Each tuple tji : {v} consists of a set
of values of attributes, v, conforming to a schema Si defined for a view Vi.

Depending on whether the tuples hold by the views are made persistent
or not, views can be classified into two types: i) persistent and ii) non-
persistent. Once inserted, data tuples are never deleted from a persistent
view. As mentioned in Section 3.1, these views have a property IsPersistent
which is set to true. On the contrary, in a non-persistent view, it is possible
that tuples inserted into the view are not committed and therefore, are no
longer available to access after they are processed. For non-persistent views
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the IsPersistent is set to false. All views shown in Figure 4.2 are persistent
views.

Views are produced by both source and computing processing elements.
As defined in Section 3.1, a source processing element represents an operation Processing

elementsthat either assigns a constant value into a variable or an operation that
acquires data from the disk or any other source. In the example workflow
shown in Figure 4.2, SP1, SP2 and SP3 are source processing elements
since they acquire data products sent by the sensors. On the contrary, a
computing processing element represents an operation that either computes
a value/data product or writes data products into a file, database etc. In
Figure 4.2, P4, P5 are computing processing elements. Views which are
produced by the source processing elements are always persistent which
is not necessarily true in case of views produced by computing processing
elements.

Tuples can be inserted into a view Vi either at a regular interval or in
an arbitrary manner. The amount of time between two successive tuples Sampling

intervalinsertion into a view Vi is referred to as sampling interval, λi. λi can vary
depending on the nature of the source or computing processing elements
which generates and inserts the tuples into the views. However, in this
example workflow shown in Figure 4.2, we assume that for all views Vi,
λi is constant, i.e., tuples are inserted at a regular interval.

A view can be used as an input to computing processing elements only.
A computing processing element, Pk, requires a window to be defined over Windows

the input view for it’s successful execution in the context of data streams.
As defined in Section 3.1, a window specifies a subset of data products
used by a computing processing element to produce output data products.
Therefore, a window (Wi

n)k is a subset of tuples within a view Vi at the
nth execution of a computing processing element Pk. In case of multiple
input views, the computing processing element Pk is executed over a set
of windows W = {(Wx

n)k, (Wy
n)k, ...} which are a finite subset of a set of

input views V = {Vx,Vy, ...}.
A window (Wi

n)k can be either tuple-based or time-based. In tuple-based Tuple-based
windowwindows, the number of tuples within a window remains constant. A

tuple-based window can be defined based on two parameters: i) window
size m and ii) a point in time T . A tuple-based window (Wi

n)k is a finite
subset of Vi containing the latest m number of tuples tji where j 6 T . The
window size is represented as WSik where, WSik = m (number of tuples).
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In a time-based window, tuples whose transaction time (system times-
tamp) falls into a specific boundary constitutes a window. A time-basedTime-based

window window (Wi
n)k = [start, end) is a finite subset of Vi containing all tuples

tj
i where start 6 j < end. In cases of time-based windows, the window

size of a window is WSik = end− start (amount of time units).
Moreover, the execution of a computing processing element, Pk, also de-

pends on a trigger. As defined in Section 3.1, a trigger interval, TRk, refersTrigger
interval to the predefined interval between two successive executions of a comput-

ing processing element, Pk. The trigger interval of a computing processing
element could be either tuple-based or time-based. Therefore, the trigger
interval specifies either the number of newly arrived tuples required to
execute Pk (tuple-based trigger) or the amount of time units between two
successive executions of Pk (time-based trigger).

After a processing element Pk is triggered, it takes an amount of time
to finish the processing. The amount of time to complete the execution ofProcessing

delay a processing element, Pk, is referred to as processing delay δk. The value
of δk may vary at each execution of Pk depending on the nature of Pk.
However, in the example workflow shown in Figure 4.2, we assume that
for all computing processing elements Pk, δk remains constant.

The aforesaid terms are used to explain the working principle of the
basic provenance inference method presented in this chapter.

4.4 overview of the basic provenance inference

Basic provenance inference is one of the inference-based methods to infer fine-
grained data provenance at reduced costs in terms of storage consumption.
It is suitable for the scientific models having offline (non-stream) data as
well as for the models processing data streams where the input data prod-
ucts arrive at a regular interval and the processing delay always remains
constant. The basic provenance inference method infers fine-grained data
provenance in three phases: i) Documentation of workflow provenance, ii)
Backward computation and iii) Forward computation.

The documentation of workflow provenance phase is a one-time action, per-Documen-
tation of

workflow
provenance

formed during the setup of the processing elements of a scientific model.
In this phase, we document the workflow provenance of a scientific model,
i.e., different values of properties of the processing elements and their re-
lationship with each other including the views, as discussed in Section 3.1.
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There might be some extra properties of a processing element which are
not specified in Section 3.1, but are required to infer accurate fine-grained
data provenance. We discuss these properties in Section 4.6.1 after motivat-
ing their necessity.

The next two phases are the main phases that infer fine-grained data
provenance based on the documented workflow provenance and the times-
tamps (transaction time) of the data products. These phases will be exe- Backward

computa-
tion

cuted only when the scientist is interested to know the fine-grained prove-
nance information of an output data product, i.e., a tuple in the output
view. The scientist will select an output data product which seems to have
abnormal or unexpected value. After choosing the output data product, the
backward computation phase is executed. During the backward computation
phase, it takes the given workflow provenance and the timestamp of the
chosen data product into consideration. By facilitating the workflow prove-
nance information, i.e., window size over the input views, processing delay
etc., it reconstructs the original processing window over the input views,
which is referred to as the inferred window. The input data products within
the inferred window might contribute to produce the selected output data
product.

Afterward, the final phase is executed. In the forward computation phase, Forward
computa-
tion

the method establishes the relationship between the input data products
within the inferred window and the output data product based on the
given workflow provenance of the scientific model, i.e., input-output ratio
of the corresponding computing processing element. It refers to the ratio of
the number of input data products contributed to the output data products
over the number of output data products produced during the execution
of a computing processing element as defined in Section 3.1.

The other two inference-based methods to infer fine-grained provenance
presented in this thesis in Chapter 5 and Chapter 6 also have the aforesaid
three phases. While the mechanism of documenting workflow provenance
is exactly the same in all three inference-based methods, the mechanism
of both backward and forward computation phases differ from one prove-
nance inference method to the other to address different system dynamics
such as regular vs. irregular input data arrival pattern, constant vs. vari-
able processing delay, single-step vs. multiple-step workflows etc. Since
all three inference-based methods depend on the workflow provenance of
the given scientific model and the timestamps of the data products, there
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are some common pieces of information required to apply these inference-
based methods. We discuss this required information in the next section.

4.5 required information

To infer fine-grained data provenance using the inference-based methods,
the following information is required.

• Explicit System Timestamps - System timestamp, also referred to as
transaction time [79], is added to every data product representing the
point in time when the data product/tuple is inserted into the view.

• Temporal Ordering - The inference-based methods require the process-
ing elements to process data products/tuples based on their order
on transaction time in the input view. If a tuple’s transaction time is t,
this tuple will be processed after the tuples with transaction time < t
and before the tuples with transaction time > t.

• Workflow Provenance - Workflow provenance of a scientific model is re-
quired which documents the relationship between input views, pro-
cessing elements and output views.

In Chapter 3, we define workflow provenance and the way of represent-
ing a workflow provenance of a scientific model. Workflow provenance of a
scientific model can be represented as a graph, known as workflow prove-
nance graph as discussed in Section 3.1. There are different types of nodes
with their associated properties in a workflow provenance graph which
are facilitated to apply the basic provenance inference method. There are
a few extra properties of a computing processing element required to be
documented which were not specified in Section 3.1. These properties of a
computing processing element are discussed in the next section which are
also used to classify the computing processing elements as shown in Table
4.1.
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4.5.1 Classification of Computing Processing Elements

A scientific model is comprised of a variety of activities and operations.
These activities/operations are transformed into a corresponding comput-
ing processing element during the execution of the model as discussed in
Section 1.3.2. The computing processing elements execute operations in-
cluding different types of SQL operations such as select, project, aggregate
functions, cartesian product, union, generic functors like interpolation, extrap-
olation etc. A computing processing element takes a number of input data
products/tuples and maps them to a set of output data products/tuples
after the successful execution. The ratio between the number of input data
products contributed to produce output data products over the number of
output data products of a particular computing processing element is re-
ferred to as input-output ratio as defined in Section 3.1. Depending on this
property, we can classify the computing processing elements into two ma-
jor categories: constant and variable ratio computing processing elements
as discussed in Section 1.3.1.

Constant ratio computing processing elements have a constant input-output
ratio each time they execute. As for example, processing elements imple-Input-

output
ratio

menting project, aggregate functions, interpolation, cartesian product and union
operations are constant ratio computing processing elements. Variable ratio
processing elements do not have a constant input-output ratio at the time of
each execution. A computing processing element implementing select oper-
ation is an example of variable ratio computing processing element. In this
case, we observe a variation in input-output ratio due to the conditional
clause of select which has to be satisfied by the input data products to be
processed. The column Input-output ratio in Table 4.1 indicates the constant
and variable ratio computing processing elements.

A computing processing element might have single or multiple input
views. As for instance, computing processing elements executing project,Number of

input
views

average, interpolation, select operations have single input view as indicated
in Table 4.1. On the other hand, a computing processing element perform-
ing cartesian product or union operation have multiple input views as shown
in Table 4.1. The number of input views of a computing processing element is
required to document in the workflow provenance to generate the inferred
window over each participating input view during the backward computa-
tion phase.
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In cases where a computing processing element has multiple input views,
further classification is required based on the number of contributing input
views as indicated by the last column in Table 4.1. It distinguishes whether Contribut-

ing input
views

an output tuple is produced by the contribution of the input tuples from
a specific input view or all input views. As an example, computing pro-
cessing elements implementing both union and cartesian product operations
have multiple input views. While in union operation, one input tuple from
a specific input view contributes to produce one output tuple, in a cartesian
product operation, tuples from all input views contribute to generate an out-
put tuple. This information should be also documented in the workflow
provenance to establish the exact relationship between input and output
data products during the forward computation phase.

As already mentioned, we need to document the information on the
participating input views of a computing processing element, i.e., num-
ber of input views, contributing input views as a part of the workflow
provenance. Furthermore, there are a few assumptions which have to be
satisfied by a subset of computing processing elements to infer accurate
fine-grained data provenance. This subset includes computing processing
elements which have either multiple input views or produce multiple out-
put data products per window execution. The assumptions are listed in
the next section.

4.5.2 Assumptions on Computing Processing Elements

The computing processing elements which have either multiple input views
or produce multiple output data products per window execution (e.g. carte-
sian product, union, project, interpolation etc.) need to satisfy the following
assumptions to infer accurate fine-grained data provenance.

• Order of Input Views: For a computing processing element with multi-
ple input views where all input views contribute to produce a single
output data product, the order in which the computing processing
element iterates over the input views must be known to infer fine-
grained data provenance. As an example, the participation of input
views at the inner and outer loop used in a cartesian product operation
must be known to the inference-based methods beforehand.

• Contributing Input View: For a computing processing element with
multiple input views where a specific single input view contributes
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at a time, it is required to document the name of the input view
explicitly with the output data product. As an example, in case of a
computing processing element implementing an union operation, for
each tuple in the output view, the name of the input view from where
that particular output tuple has been produced, must be documented
in an additional column in the output view.

• Order of Tuples in the Output View: For a computing processing ele-
ment with multiple output data products per window execution (e.g.
project operation), it is required to ensure the following:

1. All output data products/tuples produced by executing the same
window have the same transaction time while inserting into the
output view.

2. The order of contributing input data products/tuples in the win-
dow must be preserved in the set of output data products/tu-
ples produced from that window. Let, (Wi

n)k be the current
window defined over the view Vi which is an input view to the
processing element Pk as defined in Section 4.3. I be the set of
input tuples within the window (Wi

n)k and O be the set of
output tuples produced by Pk. Assuming that, i1, i2 ∈ I and
o1,o2 ∈ O, i1 contributes to produce o1 and i2 contributes to
produce o2, transaction time of i1 < transaction time of i2 then,
this requirement ensures that o1 will appear before o2 in O.

These assumptions are required to be satisfied to infer accurate prove-
nance information when the processing steps within a workflow involves
a computing processing element executing over multiple input views or
producing multiple output data products per window execution. In other
cases, these assumptions are not required (e.g. average operation).

4.6 working principle of basic provenance infer-
ence

As discussed in Section 4.4, the basic provenance inference method has three
different phases. The first phase, documentation of workflow provenance, is the
pre-requisite phase which has to be completed before the actual execution
of the inference-based method. The basic provenance inference method
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enters into the next two phases, only when fine-grained provenance in-
formation of an output data product is requested. Both of these phases,
backward and forward computation facilitate the explicated workflow prove-
nance information during their execution and eventually infer fine-grained
data provenance of the selected output data product/tuple.

4.6.1 Documentation of Workflow Provenance

In this phase, the workflow provenance of the entire data processing is
explicated. It includes documenting the values of the properties of different
types of nodes present in the workflow provenance graph as discussed
in Section 3.1. As shown in Figure 3.1, each type of nodes has the listed
properties and during this phase, the value of these properties is set.

For computing processing elements, some extra properties such as num-
ber of input views, contributing input view are added based on the re-
quired information and assumptions discussed in Section 4.5. The expli-
cated information of a computing processing element is quite similar to
the process provenance reported in [116]. Process provenance describes the
parameters of a single process to execute. The basic provenance inference
method facilitates the documented properties of computing processing ele-
ments to infer fine-grained data provenance. Therefore, the following prop-
erties of a computing processing element must be documented during this
phase based on the discussion in Section 3.1, Section 4.5 and a workflow
model for continuous data [132].

• Window type: refers to a list of window types; one element for each
input view. The value can be either tuple or time.

• Window size: refers to a list of window sizes; one element for each
input view. The value represents the size of the window.

• Trigger type: specifies how a computing processing element will be trig-
gered for execution; The value can be either tuple or time.

• Trigger interval: refers to the interval between successive executions
of the same computing processing element.

• Input-output ratio: refers to the ratio of the number of input data prod-
ucts contributed to produce output data products over the number of
output data products of a particular computing processing element.
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 Vin

VP Computing Processing Element View

Project

Pproject
 Vout

  (Mandatory)

- ID = Pproject

- Name = Project

- Type = SQL

- input-outputRatio = 1:1

- hasOutput = true

  (Optional)

- windowType = {tuple}

- windowSize = {3}

- triggerType = tuple

- triggerInterval = 1

- noOfInputViews = 1

- idOfInputViews = {Vin} 

- contributingInputViews = n/a

- processingDelay = 1 time unit

  (Mandatory)

- ID = Vin

- Name = input

- Type = relational

- IsPersistent = true

- IsIntermediate = false

  (Optional)

- samplingInterval = 2 time units

  (Mandatory)

- ID = Vout

- Name = output

- Type = relational

- IsPersistent = true

- IsIntermediate = false

Figure 4.3: Example of the explicated workflow provenance

• Number of input views: refers to the total number of input views.

• Identifier of input views: refers to the list of ids (node identifiers) of
input views.

• Contributing input views: refers to the fact that whether a computing
processing element with multiple input views processes data prod-
ucts over all input views or a specific input view at a time. For com-
puting processing elements with only one input view, it is set to not
applicable.

• Processing delay: refers to the amount of time required by a comput-
ing processing element to complete the execution over the current
window.

Furthermore, for each input view, sampling interval which refers to the
amount of time between two successive tuples/data products insertion
into that view, is also documented.

Figure 4.3 shows an artificial, simple workflow and the explicated work-
flow provenance. In Figure 4.3, the workflow consists of a computing pro-Example

cessing element implementing a project operation, Pproject, which takes
one input view Vin as input and produces one output view, Vout. More-
over, we assume that, the sampling interval of the input view Vin, λin = 2
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time units and the window size, WSinproject = 3 tuples. The processing
element, Pproject will be executed after arrival of every tuple. Therefore,
TRproject = 1 tuple. Pproject takes 1 time unit to process the current win-
dow which is the processing delay, δproject. A data tuple, tj indicates that
the transaction time of the tuple is j. Based on this settings of the workflow,
the explicated workflow provenance of different nodes (e.g. Vin, Pproject,
Vout) is also depicted in Figure 4.3. The next two phases of the basic prove-
nance inference method facilitates this documented workflow provenance
information as shown in Figure 4.3 to infer fine-grained data provenance.

4.6.2 Backward Computation

The backward computation phase is executed based on the request initi-
ated by a user to infer fine-grained data provenance of an output data pro-
duct/tuple. Figure 4.4 depicts the working mechanism of the backward
computation phase. The left-side of Figure 4.4 shows the available data
products/tuples in both input and output view, i.e., Vin and Vout, respec-
tively. The user chooses a tuple T from the output view Vout, for which
he/she initiates the request to infer fine-grained data provenance. The tu-
ple T is also referred to as the chosen tuple.

The backward computation phase reconstructs the original window over
which the actual execution of the computing processing element, Pk, was
taken place and the chosen tuple T was produced. To accomplish that,
backward computation phase facilitates the explicated workflow prove-
nance, shown in Figure 4.3, and the transaction time of the chosen tuple T.
This reconstructed window is referred to as the inferred window. In Figure
4.4, the transaction time of the chosen tuple is 8 which is referred to as the
reference point to calculate the boundary/interval of the inferred window.

The mechanism of the backward computation phase is given in Algo-
rithm 4.1. First, the transaction time of the chosen tuple T, i.e., reference Algorithm

point, and number of input views are retrieved in line 1 and 2. The pro-
cessing delay of Pk, δk is also retrieved in line 3. Then, for each input
views, we retrieve it’s id, window type and window size in line 5-7. After-
ward, we compute the list of input tuples ICi for each input view Vi

which form the inferred window. There are two specific functions to ac-
complish this task based on the type of the window. If the window is
a tuple-based window, then the function reconstructTupleWindow in line
9-10 is executed. Otherwise, in case of a time-based window the other func-
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t7
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Provenance request
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t9

tj Tuple with transaction time j
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Inferred Window Original Window
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- Sampling interval = 2 time units- Window = 3 tuples

- Trigger = after 1 tuple
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t8

t8

t8

- Processing delay = 1 time unit

Chosen Tuple, T

Figure 4.4: Illustration of the backward computation phase

tion reconstructTimeWindow in line 12-13 is executed. Both functions take
exactly the same parameters.

In case of a tuple-based window, the function reconstructTupleWindowTuple-based
windows calculates the upper bound or the ending edge of the inferred window de-

fined over the input view Vi based on the following equation.

upperBound = referencePoint− processingDelay (4.1)

Please note that, the upper bound of the inferred window refers to a time
value. After calculating the upper bound, the function reconstructTupleWindow

considers only the latest windowSize number of tuples whose transaction
time is less than or equal to the upperBound to form the inferred window.

In case of a time-based window, the other function reconstructTimeWindowTime-based
windows is executed. It calculates both the upper bound and the lower bound of the

inferred window defined over the input view Vi based on the following
equations.

upperBound = referencePoint− processingDelay (4.2)

lowerBound = referencepoint− processingDelay−windowSize

(4.3)
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Algorithm 4.1: Backward Computation for Basic Provenance Infer-
ence

Input: An output tuple T produced by a processing element Pk, for
which fine-grained provenance is requested

Output: Set of input tuples ICi for each input view Vi which form
the inferred window producing T

1 referencePoint← getTransactionTime(T);
2 noOfInputViews← getNoOfInputViews(Pk);
3 processingDelay← getProcessingDelay(Pk);
4 for i← 1 to noOfInputViews do
5 inputView← getInputViewID(Pk, i);
6 windowType← getWindowType(inputView);
7 windowSize← getWindowSize(inputView);
8 if windowType = "tuple" then /* tuple-based windows */

9 ICi ← reconstructTupleWindow(inputView,windowSize,
10 referencePoint,processingDelay);
11 else /* time-based windows */

12 ICi ← reconstructTimeWindow(inputView,windowSize,
13 referencePoint,processingDelay);
14 end
15 end

Both upper bound and lower bound of the inferred window are time val-
ues. After calculating these values, the function reconstructTimeWindow

considers all the tuples tj satisfying the condition: lowerBound 6 j <

upperBound to construct the inferred window.
The right-side of Figure 4.4 shows the inferred window based on Algo-

rithm 4.1 for the workflow shown in Figure 4.3. In this workflow, the win- Example

dow is tuple-based. Therefore, according to Equation 4.1, the upper bound
of the inferred window is calculated which is 7. Since the given window
size is 3 tuples, the backward computation algorithm considers the latest
3 tuples having transaction time 6 7 from the input view Vin to construct
the inferred window and is shown by a light-blue shaded rectangle in the
right-side of Figure 4.4. The list of tuples within the inferred window over
an input view Vi is denoted as ICi . Therefore, the tuples enclosed within
the light-blue shaded rectangle over Vin in Figure 4.4 represents the list of
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tuples ICin which is used in the forward computation phase of the basic
provenance inference method.

4.6.3 Forward Computation

The last phase of the basic provenance inference method is the forward
computation phase. In this phase, the inference-based method establishes
the data-dependent relationship between the input data products/tuples
and the chosen output data product/tuple. This data-dependent relation-
ship is referred to as fine-grained data provenance. To infer accurate fine-
grained data provenance, the forward computation phase facilitates the
input-output ratio alongside some other properties of the processing ele-
ment Pproject which have been already documented as workflow prove-
nance information, discussed in Section 4.6.1.

Algorithm 4.2 describes the mechanism in the forward computation
phase to infer accurate fine-grained data provenance. First, number of con-Algorithm

tributing input tuples, number of produced output tuples, contributing input
views and number of input views are retrieved in line 2-5 from the explicated
workflow provenance as shown in Figure 4.3. As mentioned in Section
4.6.2, the list of candidate input data products/tuples, ICi , for each input
view Vi, might contribute to produce the chosen tuple T. The forward
computation phase selects only the contributing input data products/tu-
ples from ICi for each input view Vi and finally associates the selected
input tuples to the chosen tuple T. This selection mechanism depends on
the types of the computing processing elements as discussed in Section
4.5.1.

For computing processing elements implementing operations where only
one input tuple contributes to the output tuple such as a project or an union
operation (line 6), we have to identify the relevant contributing input tuple.
However, there are a few computing processing elements which involves
multiple input views but only one input view is contributing at a time,
i.e., contributing input views = "specific". As an example, a computing pro-Union

cessing element executing an union operation falls into this category. To
address these cases, line 8-10 in Algorithm 4.2 is executed. Otherwise, ifProject &

Cartesian
product

the tuples in all the input views contribute at the same time to a particular
output tuple, line 12-14 is executed. In both cases, we need to facilitate
the assumptions on the order of input views, the contributing input view and
order of tuples in the output view, discussed in Section 4.5.2, to determine the
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Algorithm 4.2: Forward Computation for Basic Provenance Infer-
ence

Input: Set of input tuples ICi for each input view Vi which form
the inferred window producing T

Output: Set of input tuples I which contributes to T
1 I = ∅;
2 noOfInputTuples← getInputOutputRatio(PE, "input");
3 noOfOutputTuples← getInputOutputRatio(PE, "output");
4 contributingInputViews← getContributingInputViews(PE);
5 noOfInputViews← getNoOfInputViews(PE);
6 if noOfInputTuples = 1 then /* only one input tuple

contributes */

7 if
noOfInputViews > 1∧ contributingInputViews = "specific"
then /* e.g. union */

8 parentView← getParentView(T);
9 tuplePosition←

getTuplePosition(T ,parentView,noOfOutputTuples);
10 I← selectTuple(ICparentView , tuplePosition);
11 else /* e.g. project, cartesian product etc. */

12 for i← 1 to noOfInputViews do
13 tuplePostion←

getTuplePosition(T , i,noOfOutputTuples);
14 I← selectTuple(ICi , tuplePosition)∪ I;
15 end
16 end
17 else /* all input tuples contribute (e.g. average,

interpolation) */

18 for i← 1 to noOfInputViews do
19 I← ICi ∪ I;
20 end
21 end

position of the chosen tuple in the output view. Based on the position of
the chosen tuple and the assumption on the order of tuples in the output view
discussed in Section 4.5.2, we can select the input tuple which contributed
to produce the output tuple T (in line 10 and 14).
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Figure 4.5: Illustration of the forward computation phase

In cases where all input tuples contribute to the output tuple indepen-
dent of the number of input views, all tuples accessible from all inferred
windows are selected. Therefore, the set of contributing input tuples is theAverage &

Interpola-
tion

union of the set of candidate input tuples per input view (line 19).
Figure 4.5 depicts the forward computation phase. In this example, since

the computing processing element is performing a project operation, num-
ber of contributing input tuples and number of produced output tuples are 1 and
only one input view participates to the processing (see Table 4.1). There-Example

fore, we execute the segment reported in line 12-14 to infer the contributing
input tuple and make a relationship between the contributing input tuple
and the chosen tuple. At first, we determine the chosen tuple’s tuple posi-
tion. In this example, there are 3 tuples having transaction time equal to
the chosen tuple’s transaction time which is 8. Since the chosen tuple’s
position is second among them, tuplePosition = 2. Since, the value of tu-
ple position is 2, we choose the 2nd tuple in the descending order of tuple
appearance from the reconstructed window. The tuple, t5 contributes to
produce the chosen tuple T from the output view and is represented by
the brown-shaded tuple within the inferred window in the right-side of
Figure 4.5.
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4.7 evaluation

The basic provenance inference method is evaluated based on the workflow
presented in Section 4.2. The shaded part in Figure 4.2 is considered for
this evaluation. The processing element P5 in Figure 4.2 is implementing
an interpolation operation which has the input-output ratio = 3 : 9. The
view, V4, is the input view of P5 and the view, V5 is the output view
produced by P5. The collection of tuples in both input and output view is
referred to as sensor data. Since P5 has the input-output ratio of 3 : 9, the
number of tuples in the output view, V5, becomes three times the number
of tuples in the input view, V4. Therefore, in this case, the storage space
consumed by the sensor data becomes quite high. To have a comprehensive
evaluation considering different types of operations, we also evaluate the
cases where P5 implements other operations such as a project (input-output
ratio = 1 : 1) and an average (input-output ratio = n : 1) operation where n
be the window size.

4.7.1 Evaluation Criteria and Methods

The second research question (RQ 2) of this thesis is about the challenge of
managing fine-grained data provenance under different system dynamics
at reduced cost in terms of storage consumption as discussed in Section
1.4. The basic provenance inference method infers fine-grained data prove-
nance at reduced storage cost assuming that the system has constant pro-
cessing delay and regular arrival pattern of input data products, i.e., con-
stant sampling interval. Therefore, the basic provenance inference method
addresses RQ 2 and provides a solution. Since the primary challenge in-
troduced in RQ 2 is to have fine-grained data provenance at reduced stor-
age costs, the main evaluation criterion is the storage consumption of the
basic provenance inference method. Furthermore, the overall goal of the
inference-based framework is to provide accurate provenance information
in a cost-efficient way. Therefore, the other evaluation criterion is the accu-
racy of the basic provenance inference method.

Existing approaches [103, 26, 109, 108] record fine-grained data prove- Explicit
Provenancenance explicitly in varying manners. Since details of these implementations

are not available, the basic provenance inference method is compared with
an implementation of a fine-grained data provenance documentation, re-
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Provenance Relation

PK id COUNTER

FK1 output tuple id LONG

 input tuple id LONG

 input view name VARCHAR(10)

Input View N

PK id COUNTER

 device id VARCHAR(10)

 latitude VARCHAR(10)

 longitude VARCHAR(10)

 electrical conductivity DOUBLE

 other_attr1 VARCHAR(10)

 other_attr2 VARCHAR(10)

 valid time DATETIME

 transaction time DATETIME

Input View 2

PK id COUNTER

 device id VARCHAR(10)

 latitude VARCHAR(10)

 longitude VARCHAR(10)

 electrical conductivity DOUBLE

 other_attr1 VARCHAR(10)

 other_attr2 VARCHAR(10)

 valid time DATETIME

 transaction time DATETIME

Output View

PK id COUNTER

 latitude VARCHAR(10)

 longitude VARCHAR(10)

 electrical conductivity DOUBLE

 transaction time DATETIME

FK1

Input View 1

PK id COUNTER

 device id VARCHAR(10)

 latitude VARCHAR(10)

 longitude VARCHAR(10)

 electrical conductivity DOUBLE

 other_attr1 VARCHAR(10)

 other_attr2 VARCHAR(10)

 valid time DATETIME

 transaction time DATETIME

Figure 4.6: Schema diagram for Explicit Provenance method

ferred to as explicit provenance method. In the explicit provenance method,
the derivation history (provenance) of each output tuple is annotated and
inserted into a relation in a database. One relation per output view is main-
tained. Since tuples from multiple input views might contribute to produce
tuples in the output view, we also need to keep the name of input view in
provenance records. The annotation attributes to record provenance of an
output tuple include: i) output tuple id, ii) input tuple id and iii) input view
name. We also assign another attribute named as id which is auto incre-
mental and serves as the primary key of this relation. Figure 4.6 shows the
schema diagram of this method. In this case, if an output tuple is produced
by the contribution of 3 input tuples from the same input view, the prove-
nance relation contains 3 tuples with the same output tuple id but different
input tuple ids having the same input view name. The size of the provenance
relation shown in Figure 4.6, represents the storage consumption by the
explicit provenance method.

The explicit provenance method is the simplest way to store provenance
data. Therefore, we improve this explicit provenance collection system us-Improved

explicit
provenance

ing the concept of basic factorization which is proposed in [26]. We refer
to this technique as improved explicit provenance method. The main concept
of this method is that if an input tuple from a particular input view con-
tributes several times to produce multiple output tuples, only one record
about input tuple’s information, consisting of input tuple id and input view
name, will be kept in a separate relation. Afterward, this particular record
can be pointed by provenance relation to attach the input tuple’s informa-
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Contribution Relation

PK id COUNTER

 input tuple id LONG

 input view name VARCHAR(10)

Provenance Relation

PK id COUNTER

FK1 output tuple id LONG

FK2 contributing tuple id LONG

Input View N

PK id COUNTER

 device id VARCHAR(10)

 latitude VARCHAR(10)

 longitude VARCHAR(10)

 electrical conductivity DOUBLE

 other_attr1 VARCHAR(10)

 other_attr2 VARCHAR(10)

 valid time DATETIME

 transaction time DATETIME
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 device id VARCHAR(10)

 latitude VARCHAR(10)

 longitude VARCHAR(10)

 electrical conductivity DOUBLE

 other_attr1 VARCHAR(10)
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 valid time DATETIME

 transaction time DATETIME

Output View

PK id COUNTER

 latitude VARCHAR(10)

 longitude VARCHAR(10)

 electrical conductivity DOUBLE

 transaction time DATETIME

FK1

Input View 1

PK id COUNTER

 device id VARCHAR(10)

 latitude VARCHAR(10)

 longitude VARCHAR(10)

 electrical conductivity DOUBLE

 other_attr1 VARCHAR(10)

 other_attr2 VARCHAR(10)

 valid time DATETIME

 transaction time DATETIME FK2

Figure 4.7: Schema diagram for Improved Explicit Provenance method

tion with appropriate output tuples’ information. The higher the number
of output tuples and the higher the number of contribution of one input
tuple to produce output tuples, the more the improved explicit method can
reduce storage consumption to maintain provenance data compared to the
explicit provenance method.

Figure 4.7 shows the schema diagram of this method. In this method, the
contributing input tuples are stored into a separate relation, called contri-
bution relation. Then, using the concept of foreign key, we associate output
data tuples to their corresponding input data tuples. Therefore, in this case,
two relations per output view are maintained. Contribution relation holds
the reference of input data tuples with an id (auto incremental), input tuple
id and input view name as depicted in Figure4.7. The provenance relation
associates these input tuples to output tuples containing id, output tuple
id and contributing tuple id where contributing tuple id is the foreign key re-
ferred to the contribution relation. The size of these two relations represent
the storage consumption by the improved explicit provenance method.

For the basic provenance inference approach, the storage consumption due
to the inclusion of the transaction time, i.e., system timestamps, to each tuple
in both input and output views is considered as the storage cost to infer
data provenance. We compare the storage cost of these three approaches
in different test cases described in Section 4.7.3.

Finally, it is also important to check whether the basic provenance infer-
ence method infers accurate provenance information or not. To check the
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Table 4.2: Parameters of Different Test Cases used for the Evaluation

parameters test cases

Tuple-based Windows Time-based Windows

Overlap Non-overlap Overlap Non-overlap

Window size 3 3 6 s 6 s

Trigger interval 1 3 2 s 6 s

Sampling interval 2 s 2 s 2 s 2 s

processing delay 1 s 1 s 1 s 1 s

accuracy of the inference-based method, the fine-grained data provenance
provided by the explicit provenance method is used as the ground truth and
it is compared with the fine-grained data provenance inferred by the basic
provenance inference method.

4.7.2 Dataset

For the evaluation, a real dataset3 measuring electrical conductivity of wa-
ter, collected by the RECORD project, discussed in Section 4.1, is used. The
workflow operating on this dataset has been discussed in Section 4.2. The
experiments are performed on a underlying PostgreSQL 8.44 database and
the Sensor Data Web5 platform. The input dataset contains 30000 tuples
representing a six-month period from July-December 2009 and requires
7200 KB of storage space.

4.7.3 Test cases

To compare the storage consumption among the basic provenance inference,
the explicit provenance and the improved explicit provenance method, we use a
few test cases. All these test cases are based on sliding windows. However,
there is a variation in the type of windows as well as the amount of slide.

3 Availableathttp://data.permasense.ch/topology.html#topology

4 Available at http://www.postgresql.org/
5 Available at http://sourceforge.net/projects/sensordataweb/
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Table 4.2 shows the window size, trigger interval and sampling interval of
the 4 test cases, which are considered for this evaluation. Test cases based
on the tuple-based windows have window size 3 with overlapping and
non-overlapping variation. We have chosen the window size of 3 based on
the artificial workflow described in Section 4.2, where we assumed that in-
put data products were sent by 3 different sensors located in different cells
of a 3× 3 grid to calculate the interpolated values for all cells within the
grid. The other two test cases are defined based on time-based windows
having window size of 6 seconds with overlapping and non-overlapping
variation. In all cases, data products at the input view arrive after every
2 seconds which is referred to as the sampling interval. Evaluation using
these test cases allows us to report results covering different system set-
tings.

4.7.4 Storage Consumption

Interpolation Operation

Firstly, the storage consumption managing fine-grained provenance data
by the explicit provenance, improved explicit provenance and the basic prove-
nance inference method are investigated. In this experiment, we measure
the storage overhead to maintain fine-grained data provenance for the In-
terpolation processing element based on the workflow described in Section
4.2 using the test cases mentioned in Section 4.7.3.

In the non-overlapping tuple-based window case, each window contains
3 tuples and the computing processing element performing an interpola-
tion operation is executed for every third arriving tuple. This results into Sensor data

30000÷ 3× 9 = 90000 output tuples since the interpolation operation is ex-
ecuted for every third input tuple and it produces 9 output tuples at a time
because the area of the river is divided into 3× 3 cells based on the sce-
nario discussed in Section 4.1. It produces the output view which requires
about 4200 KB of storage space. In the overlapping tuple-based window
case, the window contains 3 tuples and the operation is executed for every
tuple. This results into 30000× 9 = 270000 output tuples since for every in-
put tuple the computing processing element is executed and producing 9
output tuples, which requires about 12650 KB. As already mentioned, the
collection of both input and output tuples together is referred to as the sen-
sor data, the size of sensor data becomes 7200KB+4200KB = 11400KB and
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7200KB+12650KB = 19850KB for the non-overlapping and the overlapping
tuple-based window case, respectively.

For the explicit provenance method to maintain fine-grained data prove-
nance, the relation between input and output tuples are enumerated as
shown in Figure 4.6. In the non-overlapping tuple-based window case, theExplicit

provenance relation contains 90000× 3 = 270000 tuples since each output tuple is pro-
duced by the contribution of 3 (window size) input tuples. It requires about
16000 KB of storage space. In the overlapping tuple-based window case,
the relation maintaining provenance contains 270000× 3 = 810000 tuples
and requires about 47500 KB of storage space. Therefore, the explicit prove-
nance method takes about 3 times more storage space in the overlapping
case than in the non-overlapping case.

The improved explicit provenance method takes less storage space than
the explicit provenance method in these two cases. It means that there areImproved

explicit
provenance

usually higher number of input tuples which contributed several times to
produce output tuples. It happens for two reasons. Firstly, in the overlap-
ping tuple-based window case, an input tuple contributed several times to
produce output tuples because of the overlapping between two successive
windows. Secondly, in both overlapping and non-overlapping cases, the
computing processing element produced multiple output tuples from the
same set of input tuples (window) because of the nature of the interpolation
operation. The improved explicit approach takes 14100 KB and 35200 KB of
storage space, which are 89% and 74% of storage space consumed by the ex-
plicit provenance method for non-overlapping and overlapping tuple-based
window case, respectively.

The basic provenance inference method has the least storage overhead
among these three methods. The storage consumption of the basic prove-Basic

provenance
inference

nance inference method is calculated by the space required to store the
transaction time for all tuples in the sensor data, i.e., tuples in both input
and output view. The basic provenance inference method requires 4220 KB
and 5880 KB of storage space for the non-overlapping and the overlapping
tuple-based window case, respectively. The explicit provenance takes 3.75
and 8.07 times more space than the basic provenance inference method for
non-overlapping and overlapping tuple-based window case, respectively.
The improved explicit provenance takes around 3.35 and 6 times more space
than the basic provenance inference method for non-overlapping and over-
lapping tuple-based window case, respectively. Therefore, the basic prove-
nance inference method clearly outperforms the other two methods. The ba-
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(a) Tuple-based Window executing Interpolation operation
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(b) Time-based Window executing Interpolation operation

Figure 4.8: Storage cost associated with Interpolation operation for different test
cases

sic provenance inference approach requires only one attribute, transaction
time, to be attached to each input and output tuple, to apply the inference
mechanism. Therefore the storage consumption associated with the basic
provenance inference method is independent on the window size and the
amount of overlaps between windows unlike the other two methods. The
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storage consumption of the basic provenance inference depends on the
amount of sensor data, i.e., both input and output tuples, only.

Figure 4.8a shows the aforesaid numbers representing the storage cost
associated with different methods for tuple-based windows. From FigureResults of

Tuple-based
windows

4.8a, one can observe that in both overlapping and non-overlapping cases,
the storage space consumed by the explicit provenance and the improved
explicit provenance method are bigger than the size of the sensor data. Espe-
cially in the overlapping tuple-based window case, the size of provenance
data becomes almost 2.5 and 1.8 times bigger than the size of the sensor
data. The ratio of the size of provenance data over the size of sensor data
depends on the following factors: i) window size, ii) amount of overlaps
between windows, iii) input-output ratio of the computing processing ele-
ment and iv) the size of an input tuple. The bigger the window size and
overlapping between windows, the higher the ratio of the provenance data
size over the sensor data size. If a computing processing element has an
input-output ratio of n : m where m > n, i.e., implementing an interpolation
operation, the ratio becomes higher. Finally, the ratio also depends on the
size of an input tuple. A tuple in the input dataset may contain other val-
ues except the value of interest, i.e., electrical conductivity in this case. The
higher the number of other values in the input dataset, the lower the ratio
becomes since the increasing size of an input tuple eventually increases
the size of sensor data.

Figure 4.8b shows the storage consumption to maintain provenance by
different methods in case of the overlapping and the non-overlapping time-
based windows. Figure 4.8b represents numbers which are similar to theResults of

Time-based
windows

ones shown in Figure 4.8a. Since the window size of time-based window
is 6 seconds and the sampling interval is 2 seconds (see Table 4.2), each
window of 6 seconds can hold 6 seconds÷2 seconds/tuple = 3 tuples
exactly which is same to the window size of the tuple-based windows.
Furthermore, in the overlapping time-based window case, the computing
processing element triggers after 2 seconds, i.e., after 2 seconds÷2 second-
s/tuple = 1 tuple, which is the same to the trigger interval of the overlap-
ping tuple-based window case. In the non-overlapping time-based window
case, the computing processing element triggers after 6 seconds, i.e., after
6 seconds÷2 seconds/tuple = 3 tuples, which is also the same to the trig-
ger interval of the non-overlapping tuple-based window case. Therefore,
the result of time-based windows is also similar to the one of tuple-based
windows in both overlapping and non-overlapping cases. We keep similar
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settings in both tuple-based and time-based windows that is keeping 3 tu-
ples per window, because of the artificial workflow discussed in Section
4.2 where we assumed that input data products were sent by 3 different
sensors located in different cells of a 3× 3 grid to calculate the interpolated
values for all cells within the grid.

Project operation

Additional tests for different operations are also performed. Figure 4.9
shows the storage consumption comparison among the explicit provenance,
improved explicit provenance and the basic provenance inference method for
project and average operations. We report the result of both project and aver-
age operation using the test cases with tuple-based windows only. The re-
sults using the test cases with time-based windows are not reported since
they are similar to the ones using the tuple-based windows. It occurs due
to the fact that the window size and the trigger interval are similar in both
time-based and tuple-based windows as explained before.

Figure 4.9a shows the storage space consumed by different methods for
both overlapping and non-overlapping tuple-based windows, executing
a project operation. A project operation with window size of 3 tuples in Results of

Project
operation

overlapping case produces 30000× 3 = 90000 output tuples. In the non-
overlapping case, it produces 30000 tuples÷3 tuples×3 tuples = 30000 out-
put tuples. In both cases for a project operation, the basic provenance inference
approach has the lowest storage overhead compared to the other methods.
The basic provenance inference method requires 1200 KB and 2320 KB of stor-
age space for non-overlapping and overlapping tuple-based window case,
respectively. The explicit provenance takes 1.55 and 2.33 times more space
than the basic provenance inference method for non-overlapping and over-
lapping tuple-based window case, respectively. The improved explicit prove-
nance takes 2 times more space than the basic provenance inference method
for both non-overlapping and overlapping tuple-based window cases.

There are a few interesting observations that can be made from Figure
4.9a. The size of sensor data in both overlapping and non-overlapping Analysis

on size of
Sensor
Data

cases are bigger than the storage space consumed by different methods to
maintain provenance data. The reasons for this are twofold. Firstly, sensor
data includes the complete input dataset which might contain values not
used at all in the current workflow. Secondly, the number of output tuples
produced by a computing processing element implementing a project oper-
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(a) Tuple-based Window executing Project operation
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(b) Tuple-based Window executing Average operation

Figure 4.9: Storage cost associated with Project and Average operation for different
test cases

ation, is lower than the number of output tuples produced by a computing
processing element, implementing an interpolation operation. It means that
the provenance managing methods have less provenance data tuples to
maintain and therefore, it reduces the storage consumption. One may ar-
gue that since the number of output tuples produced in this case is lower,
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the storage space consumed by the output tuples also gets lower and so
does the size of sensor data. However, this is not true since the output tu-
ples have relatively very small payload than the input tuples and thus, the
decreasing number of output tuples do not have any visible effect on the
size of sensor data.

Another observation is that, the improved explicit provenance takes more
space than the explicit method in non-overlapping cases. Since windows Analysis

on
Improved
explicit
provenance

have no overlaps between each other and the computing processing ele-
ment implementing the project operation does not produce multiple out-
put data products, there are no input tuples that contribute to produce
multiple output data products. Therefore, the improved explicit provenance
method cannot reduce the storage costs in non-overlapping cases.

Average Operation

We also perform the experiment with an average operation which is an
aggregate function producing only one output tuple per window. Figure Results of

Average
operation

4.9b shows the storage space consumed by the different methods for both
overlapping and non-overlapping tuple-based windows, executing an av-
erage operation. An average operation with window size of 3 tuples in the
overlapping case produces 30000 output tuples. In a non-overlapping case,
it produces 30000÷ 3 = 10000 output tuples. In both cases for an average
operation, the basic provenance inference approach has the lowest storage
overhead compared to the other methods. The basic provenance inference
method requires 820 KB and 1220 KB of storage space for non-overlapping
and overlapping tuple-based window case, respectively. The explicit prove-
nance takes 2.25 and 4.5 times more space than the basic provenance inference
method for non-overlapping and overlapping tuple-based window case, re-
spectively. The improved explicit provenance takes 3.17 and 4.13 times more
space than the basic provenance inference method for both non-overlapping
and overlapping tuple-based window cases.

Based on this results, we can observe that the improved explicit provenance Results
analysismethod takes more space than the explicit provenance method to maintain

provenance data in the non-overlapping case, performing an average op-
eration. A similar observation has been also made for a project operation
over the non-overlapping case. The reason remains the same as discussed
before. Therefore, as mentioned in Section 4.7.1, the improved explicit prove-
nance method can perform better than the explicit provenance method when
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an input tuple contributes several times, producing multiple output tuples.
In all test case, the proposed basic provenance inference method outperforms
the other two methods keeping explicit provenance records.

The reported ratio depends on the window size and overlap between
windows. If the window size is larger and there is a big overlap between
windows, the basic provenance inference method performs even better. We
have not compared the storage consumption between the proposed method
and any standard data compression technique though. However, an obvi-
ous advantage of the proposed method is that it does not require any
pre-processing on data unlike a data compression method.

4.7.5 Accuracy

The accuracy of the basic provenance inference method is measured by
comparing the inferred fine-grained data provenance of each output data
product to the ground truth provided by the explicit provenance method
for a particular test case. As discussed in Section 4.4, the basic provenance
inference method assumes that the computing processing elements have
constant processing delay and the input data tuples arrive at a regular
interval as shown in Table 4.2. Because of these two assumptions, the pro-
posed method infers 100% accurate provenance traces for all test cases.

4.8 discussion

The inference-based methods have a few requirements to satisfy. Most of
the requirements are already introduced to process data streams in existing
literature. In [103], authors propose to use transaction time on incoming
stream data. Ensuring temporal ordering of data tuples is one of the main
requirements in stream data processing. Moreover, several studies [46, 116]
have proposed to maintain process level provenance which correspond to
the documentation of workflow provenance.

There are a few assumptions which need to be satisfied based on theAssump-
tions type of computing processing elements to infer accurate provenance infor-

mation. These assumptions are discussed in Section 4.5.2 indicating that
the inference mechanism must know the order of input views and the con-
tributing input view in cases the operation to be performed has multiple
input views. Furthermore, one of these assumptions also has to be satis-
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fied to ensure that the order of tuples in the output view follows the same
order found in input views. If these assumptions are not fulfilled by the
underlying system, the proposed method cannot be applied.

The basic provenance inference method infers provenance for constant
ratio operations. A variable ratio operation does not satisfy the assumptions Variable

ratio
operations

on the order of tuples in the output view discussed in Section 4.5.2 and
hence, the proposed method cannot be applied on these operations di-
rectly. However, transforming a variable ratio operation into a constant ra-
tio operation can overcome this difficulty. This transformation is possible
by introducing NULL tuples in the output.

Suppose, for a select operation, the input tuple which does not satisfy
the selection criteria will produce a NULL tuple in the output view, i.e.,
a tuple with a transaction time attribute and the remaining attributes are
NULL values. This is how, it is ensured that the select operation now has Solution

for high
selectivity

‘one to one’ input-output ratio and therefore, it is a constant ratio operation
which satisfies all the requirements to apply the inference-based method.
However, if the selectivity rate is very low for a given condition on a par-
ticular dataset, this transforming incurs storage overhead by introducing
many NULL tuples. Based on the experiments, we have observed that if
the selectivity rate is more than 60%, it is cost-efficient in terms of storage
to apply the concept of NULL values for a variable ratio operation.

If the selectivity rate is less than 60%, the aforesaid approach could take
more storage space than the explicit provenance method. To address variable Solution

for low
selectivity

ratio operations with low selectivity, we outline an alternative approach. In
this approach, a select operation is considered to have a default ‘many to
many’ input-output ratio. In this case, based on a fine-grained provenance
request for a selected output tuple, the basic provenance inference method
can infer a set of input tuples (the inferred window). One of these input
tuples actually contributes to produce the selected output tuple. In this
approach, the inferred provenance information might not be as precise as
it is in the aforesaid approach (‘one to one’ ratio) but it certainly reduces
storage consumption and provides all necessary information.

4.9 summary

The basic provenance inference method infers fine-grained data prove-
nance accurately at reduced storage costs. The design and development
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of this method was motivated by the second research question (RQ 2)
which mentioned the challenge of managing fine-grained data provenance
at reduced storage consumption. To explain the working principle of the
proposed method, we facilitated a simple workflow that captures sensor
measurements on electrical conductivity and produces interpolated values
to generate a contour map. We also introduced a few basic concepts that
help to explain the inference-based method.

The basic provenance inference method infers fine-grained data prove-
nance by facilitating the workflow provenance and the timestamps, also
referred to as the transaction time, attached to all input and output data
products/tuples. The method has three major phases. In the first phase,
the workflow provenance is documented. This phase is executed only once
during the setup of the workflow. The next two phases are executed only
once the user requests provenance for an output data product. In the sec-
ond phase, the basic provenance inference method reconstructs the actual
window which had taken part during the execution. The reconstructed
window is referred to as inferred window. During this phase, the method
exploits the values of different properties of the particular computing pro-
cessing element such as window size, processing delay etc. Finally, the
basic provenance inference method associates the selected output data
product with the contributing input data products. During this phase, the
method takes a few parameters of associated computing processing ele-
ments such as input-output ratio into account.

We evaluated the storage consumption and the accuracy of the basic
provenance inference method by comparing it to a few other methods such
as the explicit provenance and the improved explicit provenance method
for different types of operations. Our evaluation shows that the basic prove-
nance inference method takes least storage space to maintain fine-grained
data provenance in all test cases compared to the other methods. The basic
provenance inference can reduce storage consumption at higher magni-
tude if the window size and the overlaps between windows is bigger. The
accuracy of the basic provenance inference method is calculated by compar-
ing the inferred provenance information to the ground truth provided by
the explicit provenance collection method. The basic provenance inference
method infers 100% accurate provenance information when the processing
delay remains constant and input data products arrive at a regular interval.
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5
P R O B A B I L I S T I C P R O V E N A N C E I N F E R E N C E

Inference of fine-grained data provenance allows the scientists to achieve
accurate provenance data at reduced storage costs. Scientists could exploit
this provenance data to debug a scientific model, to validate a model as
well as to reproduce results. In Chapter 4, we presented the basic prove-
nance inference method that can infer fine-grained data provenance at re-
duced storage consumption handling both offline (non-stream) data and
data streams. Moreover, the basic provenance inference method infers 100%
accurate provenance information under a particular system dynamics. The
system dynamics refers to the set of parameters that control the nature
of how the data products are arriving into the system for processing and
when the input data products are processed. To be more specific, the sys-
tem dynamics depends on the following parameters:

1. Processing delay or δk refers to the amount of time, required to com-
plete the execution of a computing processing element, Pk, over the
current window defined on the input view Vi.

2. Sampling interval or λi refers to the amount of time between two
successive input data products insertion into an input view, Vi.

The basic provenance inference method infers 100% accurate provenance Challenges

under the assumption that the underlying system has constant δk and con-

This chapter is based on the following work: Probabilistic Inference of Fine-Grained Data
Provenance. In Database and Expert Systems Applications (DEXA’12), volume 7446 of LNCS,
pages 296–310, Springer, 2012. & Adaptive Inference of Fine-grained Data Provenance to
Achieve High Accuracy at Lower Storage Costs. In Proceedings of the IEEE International
Conference on E-Science (e-Science’11), pages 202–209, IEEE Computer Society, 2011.
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stant λi. However, in a typical system, due to other workload and the na-
ture of the particular computing processing element, the processing delay
may vary. As an example, if a computing processing element performs a
greatest common divisor operation, the amount of time required to finish the
execution depends on the number of iterations the computing processing
element should perform and thus, it could result in a variable process-
ing delay for the repeated execution of the same computing processing
element. Furthermore, the sampling interval of input data products could
also vary due to a number of reasons such as broken sensors, network
delay etc.

Therefore, we need a more sophisticated method that can infer fine-
grained data provenance under variable processing delay and sampling in-
terval. Moreover, it has to be ensured that the new inference-based methodSolution

criteria can infer fine-grained data provenance at a reduced storage costs like the
basic provenance inference method. The second research question (RQ 2),
introduces this challenge to infer fine-grained data provenance under dif-
ferent system dynamics at reduced cost in terms of storage consumption
as discussed in Section 1.4.

In this chapter, we present the probabilistic provenance inference method
that infers fine-grained data provenance by facilitating the given distri-
bution of δk and λi meeting the challenge of the ability to infer under
different system dynamics as mentioned in RQ 2. The probabilistic prove-Probabilis-

tic
Provenance

Inference

nance inference method reconstructs the inferred window in such a way that
the accuracy of the inferred fine-grained data provenance is optimized.
At the time of reconstructing the inferred window, the method calculates
an offset value which determines the distance of the shift of the window
guaranteeing optimal accuracy. The offset value is calculated based on the
relationship between the δk and the λi distribution.

The probabilistic provenance inference method has further advantages
to offer. Since this inference-based method depends on the given process-
ing delay and sampling interval distribution of the system, the probabilis-
tic provenance inference method can estimate the achievable accuracy of
the inferred provenance at design time. Therefore, the scientists could have
an estimation on the performance of the inference-based method before de-
ciding to apply it to infer fine-grained data provenance.

This chapter is structured in the following way. First, we present a sce-Chapter
structure nario based on a real project followed by the description of the example

workflow associated with the scenario. Next, we describe a few basic con-
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cepts used to explain the probabilistic provenance inference method. Based
on these concepts, we present a few cases which explains the limitations
of the basic provenance inference method based on which the probabilis-
tic provenance inference method has to be designed. The overview of the
probabilistic provenance inference method is given afterward followed by
a brief discussion on the requirements and assumptions to be fulfilled to
apply this inference-based method. Next, we explain the working principle
of the probabilistic provenance inference method. Eventually, we evaluate
this method using both real datasets and simulations followed by a brief
discussion on the applicability of this method in different situations.

5.1 scenario and workflow description

We use the scenario introduced in Section 4.1 to explain the probabilistic
provenance inference method. In this section, we provide a brief outline of
the scenario and the simplified workflow, defined based on this scenario.

RECORD1 is one of the projects in the context of the Swiss Experiment2,
which is a platform to enable real-time environmental experiments. In this
project, different types of input data products are acquired by several sen-
sors which have been deployed to monitor river restoration effects. Among
these data products, electrical conductivity of the water is also measured
which represents the level of salt in water. Scientists are interested to con-
trol the operation of a drinking water well by facilitating the available
sensor data reporting electrical conductivity.

In the context of the aforesaid scenario, we construct an artificial and
simplified workflow which is used to explain the mechanism of the proba-
bilistic provenance inference method. Figure 5.1 shows the simplified work- Workflow

descriptionflow. We assume that there are three sensors measuring electrical conduc-
tivity in three different locations. These sensors send data tuples contain-
ing the device id, the latitude and the longitude of the location, the
measured electrical conductivity, the timestamp of the measurement,
also referred to as valid time [79], along with some other attributes. Tuples
sent by these sensors are acquired by the source processing elements SP1,
SP2 and SP3 (see Figure 5.1). Scientists combine these sensor readings and
store these data tuples in the view V4. Later, scientists define a window

1 Available at http://www.swiss-experiment.ch/index.php/Record:Home
2 Available at http://www.swiss-experiment.ch/
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Figure 5.1: The example workflow

(tuple-based or time-based) over the view V4 and calculate an average of
the electrical conductivity over the defined window by executing the com-
puting processing element P5. P5 stores the result in the view V5. P5 can be
executed repeatedly based on a specific trigger interval, producing average
of electrical conductivity over a particular period defined by the associated
window. Later, a histogram, representing the average electrical conductiv-
ity, can be prepared. Scientists can request the provenance of any of the
values within the histogram if the value seems to be an abnormal/unex-
pected one. The shaded part of the workflow in Figure 5.1 is considered to
evaluate the probabilistic provenance inference method.

5.2 basic terminology

In this section, the definition of the terms which are used to explain the
probabilistic provenance inference method is given. First, we restate the
definitions of some of these terms which have already been introduced in
Section 4.3.

• Views: A view Vi can be defined as a set of tuples tji where j is
the transaction time [79]. The transaction time, j, refers to the system
timestamp indicating the point in time when the tuple is inserted
into the view Vi.

• Sampling Interval: Tuples can be inserted into a view Vi either at a
regular interval or in an arbitrary manner. The amount of time be-
tween two successive tuples insertion into a view Vi is referred to as
sampling interval, λi.
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• Computing Processing Elements: A computing processing element, Pk,
represents an operation that either computes a value/data product or
writes data products into a file, database etc. It takes views as input
and produces another view as output.

• Windows: A computing processing element, Pk, requires a window to
be defined over the input view for its successful execution in the con-
text of data streams. A window (Wi

n)k is a subset of tuples within a
view Vi at the nth execution of Pk. A window could be either tuple-
based or time-based. A tuple-based window can be defined based
on two parameters: i) window size m and ii) a point in time T . A
tuple-based window is a finite subset of Vi containing the latest m
number of tuples tji where j 6 T . The window size is represented as
WSi

k where,WSik = m (number of tuples). In a time-based window,
tuples whose timestamp falls into a specific boundary constitutes a
window. A time-based window (Wi

n)k = [start, end) is a finite sub-
set of Vi containing all tuples tji where start 6 j < end. In cases of
time-based windows, the window size WSik = end− start (amount
of time units).

• Trigger Interval: A trigger interval, TRk, refers to the predefined in-
terval between two successive executions of a computing processing
element, Pk. The trigger interval of a computing processing element
could be either tuple-based or time-based.

• Processing Delay: The amount of time to complete the execution of a
processing element, Pk, after it is triggered, is referred to as process-
ing delay δk.

Unlike the basic provenance inference method, the probabilistic provenance
inference method can infer fine-grained data provenance with variable pro-
cessing delay (δk) and variable sampling interval (λi). The probabilistic Additional

Termsprovenance inference method takes the given distribution of processing
delay and sampling interval into account to infer provenance information.
Moreover, while inferring provenance, the probabilistic provenance infer-
ence also exploits two other variables and their corresponding distribu-
tions. Therefore, the following terms are required to be defined in addition
to the aforesaid terms.

• Sampling Interval Distribution: The value of λi can change over time
period if tuples are inserted into the view Vi in an arbitrary man-
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ner. Therefore, in this case, λi becomes a discrete random variable
which has integer values, defined over time domain. The distribution
of the values of λi is referred to as the sampling interval distribu-
tion, denoted as P(λi) and the probability of λi = x is represented as
P(λi = x).

• Processing Delay Distribution: The value of δk can also change over
time due to the system workload and the nature of the computing
processing element Pk. Therefore, in this case, δk is a discrete ran-
dom variable which has integer values, defined over time domain.
The distribution of the values of δk is referred to as the processing
delay distribution, denoted as P(δk) and the probability of δk = y is
represented as P(δk = y).

• First-tuple appearance Interval: It refers to the amount of time between
a particular window starts which is defined over the view Vi to exe-
cute Pk and arrival of the first tuple within that window. First-tuple
appearance interval is denoted as αik. Since the appearance of the
first tuple within a window depends on the sampling interval λi
and λi could be variable as discussed, the value of αik also changes
over the time. Therefore, αik becomes a discrete random variable
over time domain. The distribution of the values of αik is denoted as
P(αi

k).

• Last-tuple disappearance Interval: It refers to the amount of time be-
tween the arrival of the last tuple within a particular window which
is defined over the view Vi to execute Pk and the triggering point
of that window. Last-tuple disappearance interval is denoted as βik.
Like αik, βik can be also deduced from the sampling interval λi.
Therefore, the value of βik changes over the time which indicates
that βik becomes a discrete random variable over time domain. The
distribution of the values of βik is denoted as P(βik).

The aforesaid terms are used to explain the working principle of the
probabilistic provenance inference method presented in this chapter.

5.3 inaccuracy in basic provenance inference

The basic provenance inference might infer inaccurate provenance under the
system dynamics with variable processing delay and variable sampling
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interval. The particular situation of an actual window for which the inac-
curacy occurred is referred to as a Failure Condition. We illustrate a couple
of cases, considering both tuple-based and time-based windows, where the
basic provenance inference method cannot infer accurate provenance and
define the corresponding failure condition accordingly.

5.3.1 Failure Condition for Tuple-based Windows

In case of tuple-based windows, the basic provenance inference method
may infer inaccurate provenance information if a new input data produc-
t/tuple arrives and is inserted into the input view before completing the
execution of the current window.

Figure 5.2 shows examples of the execution of the computing processing
element Pavg. We assume that Pavg takes tuples for processing from input
view Vin and after completing the execution, it produces output tuples,
inserted into the view Vout. The window size of Vin, WSinavg = 3 tu-
ples. Pavg triggers after the arrival of every tuple which means TRavg = 1

tuple. Furthermore, we also assume that at every window execution, the
processing delay of Pavg (δavg) remains constant which is 1 time unit. The
sampling interval, λin = 2 time units which is also constant.

The left side of Figure 5.2 shows the case where the basic provenance
inference method infers accurate provenance. In this case, the first three Inference

with
constant
processing
delay

tuples t1, t3 and t5 form the original window. Based on our assumptions,
the execution over this window takes 1 time unit and thus, the transaction
time of the output tuple is 6. The output tuple is shown by t6 in the view
Vout. If we infer provenance of this tuple based on the basic provenance
inference method, 6 is the reference point for calculating the upper bound of
the inferred window based on the Equation 4.1 which is given below:

upperBound = referencePoint− processingDelay

= 6− 1

= 5

After calculating the upper bound, the basic provenance inference method
considers only the latest 3 (=windowSize) tuples, satisfying transaction time
6 upperBound, to form the inferred window. Therefore, the tuple t1, t3
and t5 is included in the inferred window which is the same to the original
window.
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Figure 5.2: Examples of accurate and inaccurate provenance inference in a tuple-
based window

The right side of Figure 5.2 depicts the other case where the basic prove-
nance inference method infers inaccurate provenance because of the varia-
tion in the processing delay of Pavg, δavg. In this case, the assumption ofInference

with
variable

processing
delay

having constant processing delay, i.e., δavg = 1 time unit, is violated. In the
right side of Figure 5.2, the tuple t3, t5 and t7 form the original window
which is triggered just after the arrival of t7. It is possible that the execution
over this window could take longer than our assumption of 1 time unit due
to some other workload in the system. In this case, the processing delay of
Pavg, δavg is 3 time units and thus, the transaction time of the output tuple
becomes 10. The output tuple is shown by t10 in the view Vout. If we infer
provenance of this tuple based on the basic provenance inference method,
10 is the reference point for calculating the upper bound of the inferred window
and 1 is the value of processing delay since the basic provenance inference
method always count on the given constant processing delay and does not
observe the actual delay during the execution. Based on the Equation 4.1:

upperBound = referencePoint− processingDelay

= 10− 1

= 9
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After calculating the upper bound, the basic provenance inference method
retrieves only the latest 3 (=windowSize) tuples, satisfying transaction time
6 upperBound, to form the inferred window. Therefore, the tuple t5, t7
and t9 is included in the inferred window which differs from the orig-
inal window, resulting into inaccurate provenance information. Looking
at these examples, we can observe that in the later case, a new tuple t9
is inserted into the view Vin before the completion of the current origi-
nal window which results into the inaccuracy. From this observation, the
following Failure Condition is defined.

Failure Condition 5.1 Inclusion of a non-contributing input tuple, at the end-
ing edge of the inferred window, may occur if that particular non-contributing
tuple is inserted into the input view, Vi, before completing the execution of a com-
puting processing element, Pk, on the current original window defined over the
same input view, Vi. If the following condition holds, we have a failure: λi 6 δk.

5.3.2 Failure Conditions for Time-based Windows

In case of time-based windows, the basic provenance inference method
may infer inaccurate provenance information if there is a variation in both
processing delay (δk) and sampling interval (λi) during the repeated exe-
cutions of a computing processing element.

Figure 5.3 shows the examples of the execution of a particular computing
processing element Pavg with a time-based window. Pavg has input view
Vin and after completing the execution, it produces output tuples, inserted
into the view Vout. We assume that the window size of Vin, WSin = 6

time units. Pavg triggers after every 2 time units which means TRavg = 2

time units. Furthermore, we also assume that at every window execution,
the processing delay, δavg, remains constant which is 1 time unit. The
sampling interval, λin = 2 time units which is also constant.

The left side of Figure 5.3 shows the case where the basic provenance
inference method infers accurate provenance. In this case, the original win- Inference

with
constant
processing
delay

dow holds tuples with the transaction time within the range of [0, 6). Please
note that the upper bound of the window is exclusive and the lower bound
of the window is inclusive. Based on the given constant processing delay
δavg, the execution over this window takes 1 time unit and thus, the trans-
action time of the output tuple is 7. The output tuple is shown by t7 in the
view Vout. If we infer provenance of this tuple based on the basic prove-
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Figure 5.3: Examples of accurate and inaccurate provenance inference in a time-
based window

nance inference method, 7 is the reference point for calculating the upper
bound and lower bound of the inferred window based on the Equation 4.2 and
4.3, respectively, which are given below:

upperBound = referencePoint− processingDelay

= 7− 1

= 6

lowerBound = referencePoint− processingDelay−windowSize

= 7− 1− 6

= 0

After calculating the upper bound and lower bound, the basic provenance
inference method includes the tuples with the transaction time within the
range of [0, 6) to form the inferred window. In this case, the inferred window
is the same to the original window and therefore, the basic provenance
inference method infers accurate provenance.

The right side of Figure 5.3 depicts the other case where the basic prove-
nance inference method infers inaccurate provenance because of the varia-
tion in the processing delay of Pavg (δavg). In this case, the assumption of
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having constant processing delay of Pavg, i.e., δavg = 1 time unit, is vio-
lated. In the right side of Figure 5.3, the tuples with transaction time within
the range of [2, 8) are included in the original window which is triggered
at time 8. It is possible that the execution over this window could take Inference

with
variable
processing
delay

longer than our assumption of 1 time unit due to some other workload
in the system. In this case, the processing delay of Pavg, δavg = 3 time
units, and thus, the transaction time of the output tuple becomes 11. The
output tuple is shown by t11 in the view Vout. If we infer provenance of
this tuple based on the basic provenance inference method, 11 is the ref-
erence point for calculating the upper bound of the inferred window and 1 is
the value of processing delay since the basic provenance inference method
always count on the given constant processing delay and does not observe
the actual delay during the execution. Based on the Equation 4.2 and 4.3:

upperBound = referencePoint− processingDelay

= 11− 1

= 10

lowerBound = referencePoint− processingDelay−windowSize

= 11− 1− 6

= 4

After calculating the upper bound and lower bound, the basic provenance
inference method includes the tuples with transaction time within the range
of [4, 10) to form the inferred window. In this case, the inferred window is
different than the original window and therefore, the basic provenance
inference method infers inaccurate provenance.

There are two possible reasons of inferring inaccurate provenance infor-
mation in time-based windows. Firstly, exclusion of a contributing input
tuple/data product from the inferred window might cause inaccuracy. Sec- Exclusion

of con-
tributing
input
tuples

ondly, inclusion of a non-contributing input tuple into the inferred window
might also result into wrong provenance information. To explain these rea-
sons further, we need to exploit two variables, αinavg and βinavg, as intro-
duced in Section 5.2. αinavg refers to the amount of between the original
window start and the arrival of the first tuple within that window. In the
first case shown in the left side of Figure 5.3, the window starts at time 0
and the first tuple arrives at time 1. Therefore, αinavg = 1 time unit. In
the second case shown in the right side of Figure 5.3, the window starts at
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time 2 and the first tuple arrives at time 3 which means that αinavg = 1

time unit. However, the value of δavg differs in these cases. In the first
case, δavg = 1 time unit while in the second case, the value of δavg is 3
time units. Since the basic provenance inference method only counts on the
given constant value of δavg to calculate the boundary of the inferred win-
dow, it could possibly exclude a contributing tuple from the starting edge
of the inferred window in the second case shown in the right side of Figure
5.3 where αinavg is less than the actual processing delay δavg. Based on
this observation, the following Failure Condition is defined:

Failure Condition 5.2 Exclusion of a contributing input tuple from the starting
edge of the inferred window may occur if the processing delay δk of a computing
processing element Pk is longer than the amount of time between the original
window starts and the arrival of the first tuple in the original window which is
defined over the view Vi, an input view to Pk. If the following condition holds, we
have a failure: αik < δk

In time-based windows, it is also possible to include a non-contributing
input tuple in the inferred window which results into inaccurate provenance
information. This could happen if an input tuple arrives before completingInclusion

of non-
contributing

input
tuples

the execution over the current window. In a time-based window with a
time-based trigger, since the window can trigger after a while once the last
tuple within the window has arrived, this amount of time is needed to be
considered to decide whether such an inaccuracy can occur or not. In the
right side of Figure 5.3, βinavg refers to the amount of time between the
arrival of the last tuple within the window and the trigger of the window
which is 1 time unit. If the difference between the sampling interval of the
non-contributing input tuple, represented as λin, and βinavg is less than
the actual processing delay δavg for that window, the non-contributing
tuple t9 is included in the inferred window. Based on this observation, the
following Failure Condition is defined:

Failure Condition 5.3 Inclusion of a non-contributing input tuple, at the end-
ing edge of the inferred window, may occur if that particular non-contributing
tuple is inserted into the input view, Vi, before completing the execution of a com-
puting processing element, Pk, on the original window defined over the same input
view, Vi. If the following condition holds, we have a failure: λi −βik < δk.
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5.4 overview of the probabilistic provenance in-
ference

The probabilistic provenance inference method is an extension of the basic
provenance inference method, discussed in Chapter 4. While the general prin-
ciple remains the same, the probabilistic provenance inference method is
capable of handling variation in the processing delay and the sampling in-
terval by facilitating the given distributions of these parameters. The major
advantage of the probabilistic provenance inference method is that it can
infer comparatively more accurate provenance information than the basic
provenance inference method at the same amount of storage consumption.

Like the basic provenance inference method, the probabilistic provenance
inference method has three phases to infer fine-grained data provenance.
These three phases are: i) Documentation of workflow provenance, ii) Back-
ward computation and iii) Forward computation. As already discussed in Documen-

tation of
workflow
provenance

Section 4.6.1, documentation of workflow provenance is a one-time action doc-
umenting values of different properties of nodes within a given workflow,
performed during the setup of the processing elements. In addition, both
processing delay and sampling interval distributions, i.e., P(δk) and P(λi),
respectively, need to be documented in this phase to apply the probabilistic
provenance inference method.

The next two phases will be executed only when the scientist is inter-
ested to know the fine-grained provenance information of an output data
product, i.e., a tuple in the output view. The scientist will select an out-
put data product which seems to have abnormal/unexpected value. After Backward

computa-
tion

choosing the output data product, the backward computation phase is exe-
cuted. The backward computation phase reconstructs the original window,
referred to as the inferred window. Unlike the basic provenance inference,
the probabilistic provenance inference method facilitates the documented
P(δk) and P(λi) distributions alongside the window size defined over the
input views to compute the inferred window in this phase. The input data
products within the inferred window might contribute to produce the se-
lected output data product.

Afterward, the forward computation is executed. Like the basic prove- Forward
computa-
tion

nance inference method, the probabilistic provenance inference method es-
tablishes the relationship between contributing input data products within
the inferred window and the selected output data product by facilitating
the given workflow provenance in this phase.
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5.5 required information

Applying the probabilistic provenance inference method, inferring fine-
grained data provenance, depends on a few parameters and assumptions,
like the basic provenance inference method. Details on this required infor-
mation and assumptions have already been discussed in Section 4.5. In this
section, we present a summary on this required information and assump-
tions.

First, it is required to attach the transaction time (system timestamp) to
every data products/tuples. Second, the probabilistic provenance inference
method requires the processing elements to process data products/tuples
based on their order on transaction time in the input view, following tem-
poral ordering of tuples during the processing. Moreover, like any other
inference-based methods, the probabilistic provenance inference method
also considers the documented workflow provenance of a scientific model
to infer fine-grained data provenance.

Furthermore, there are a few assumptions required to be fulfilled to
apply the probabilistic provenance inference method. These assumptions
which are applicable for a computing processing element with multiple
input views or producing multiple output data products, have been intro-
duced in Section 4.5.2. One of these assumptions indicates that the infer-
ence mechanism must know the order of input views which participate in an
activity, realized by a computing processing element. Another assumption
mentions that the name of the contributing input view shall be documented
explicitly with the output tuple in cases the activity to be performed has
multiple input views. The other assumption also has to be satisfied to en-
sure that the order of tuples in the output view follows the same order found
in input views. If these assumptions are not fulfilled by the underlying
system, the probabilistic provenance inference method cannot be applied.

5.6 documentation of workflow provenance

The documentation of workflow provenance is the pre-requisite phase which
has to be completed before the actual execution of the inference-based
method. In this phase, the workflow provenance of the entire data process-
ing is explicated. In Section 4.6.1, we have provided a list of properties of
a computing processing element which are required to be documented to
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apply the basic provenance inference method. This set of properties are
also required to be documented to apply the probabilistic provenance in-
ference method. Therefore, we again provide this set of properties in the
following.

• Window type: refers to a list of window types; one element for each
input view. The value can be either tuple or time.

• Window size: refers to a list of window sizes; one element for each
input view. The value represents the size of the window.

• Trigger type: specifies how a computing processing element will be trig-
gered for execution; The value can be either tuple or time.

• Trigger interval: refers to the interval between successive executions
of the same computing processing element.

• Input-output ratio: refers to the ratio of the number of input data prod-
ucts contributed to produce output data products over the number of
output data products of a particular computing processing element.

• Number of input views: refers to the total number of input views.

• Identifier of input views: refers to the list of ids (node identifiers) of
input views.

• Contributing input views: refers to the fact that whether a computing
processing element with multiple input views processes data prod-
ucts over all input views or a specific input view at a time. For com-
puting processing elements with only one input view, it is set to not
applicable.

Unlike the basic provenance inference method, the probabilistic prove-
nance inference method can handle variation in the processing delay of a
computing processing element as well as variation in the sampling inter-
val of an input view. Therefore, in addition to the aforesaid properties, the Additional

propertiesdistribution of processing delay of a computing processing element and
the distribution of sampling interval of an input view are required to be
explicated in the workflow provenance.

• Processing delay distribution: refers to the distribution of amount of
time required by a computing processing element to complete the
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 V4

VP Computing Processing Element View

Average

P5
 V5

  (Mandatory)

- ID = P5

- Name = Average

- Type = Aggregate

- hasOutput = true

- input-outputRatio = n:1

  (Optional)

- windowType = {time}

- windowSize = {5}

- triggerType = time

- triggerInterval = 5

- noOfInputViews = 1

- idOfInputViews = {V4} 

- contributingInputViews = n/a

- processingDelayDistribution = 

{0.68, 0.32}

  (Mandatory)

- ID = V4

- Name = input

- Type = relational

- IsPersistent = true

- IsIntermediate = false

  (Optional)

- samplingIntervalDistribution = 

{0.37, 0.39, 0.24}

  (Mandatory)

- ID = V5

- Name = output

- Type = relational

- IsPersistent = true

- IsIntermediate = false

Figure 5.4: Example of the explicated workflow provenance

execution over the defined window. For a computing processing ele-
ment Pk, the processing delay distribution is denoted as P(δk).

• Sampling interval distribution: refers to the distribution of amount of
time between two successive tuples insertion into the view Vi, which
is an input view of a computing processing element Pk. The sampling
interval distribution is denoted as P(λi).

Figure 5.4 shows the simplified workflow described in Section 5.1 and its
explicated workflow provenance. In Figure 5.4, the workflow consists of aExample

computing processing element P5, implementing an average operation. P5
takes one input view V4 and produces one output view, V5. The given sam-
pling interval distribution of the input view V4, P(λ4) = {0.37, 0.39, 0.24} for
time unit 1, 2 and 3, respectively. It means that 37% tuples arrive after 1
time unit from the previous tuple arrival and so on. The window size,
WS4

5 = 5 time units. The processing element, P5 will be executed after
every 5 time units. Therefore, TR5 = 5 time units. The processing delay
distribution of P5, P(δ5) = {0.68, 0.32} for time unit 1 and 2, respectively.
It means that 68% times of the processing over the current window take
1 time unit and so on. These distributions are given by scientists based
on the analysis of historical data which can be obtained by observing the

140



5.7 backward computation

execution of the workflow of a model for at least 100 times. The next two
phases of the probabilistic provenance inference method facilitates this doc-
umented workflow provenance information, shown in Figure 5.4.

5.7 backward computation of probabilistic prove-
nance inference

The backward computation phase is executed based on the request initi-
ated by a user to infer fine-grained data provenance of an output data
product/tuple T. The backward computation phase reconstructs the origi-
nal window by facilitating the explicated workflow provenance, shown in
Figure 5.4 and the transaction time of the tuple T which is referred to as the
reference point. This reconstructed window is referred to as the inferred win-
dow. Unlike the basic provenance inference, the probabilistic provenance in-
ference method reconstructs the inferred window based on an offset value
to handle the variation in processing delay and sampling interval. The off-
set value represents the distance in time between the reference point and the
upper bound of the window. The offset value is calculated in such a way that
the probabilistic provenance inference method can achieve the optimal ac-
curacy. Therefore, the mechanism to calculate the offset value is the center
of focus in the backward computation phase.

The mechanism of the backward computation phase is given in Algo-
rithm 5.1. First, the transaction time of the chosen tuple T, i.e., reference Algorithm

point, and number of input views are retrieved in line 1 and 2. The process-
ing delay distribution of Pk, P(δk) is also retrieved in line 3. Then, for each
input view Vi, we retrieve it’s id, window type, window size and sampling in-
terval distribution (P(λi)) in line 5-8. Afterward, we compute the list of the
input tuples ICi for each input view Vi which form the inferred window.
Forming the inferred window depends on the type of the window. If the
window is a tuple-based window, line 10-13 are executed. Otherwise, in
case of a time-based window, line 15-23 are executed. In both cases, the
backward computation phase returns a set of tuples, ICi , for each input
view Vi. These tuples form the corresponding inferred window which is
used by the forward computation phase to infer exact relationship between
input data products/tuple and the chosen output data product/tuple. The
details of the mechanism of reconstructing the original window for both
tuple-based and time-based windows are explained in next sections.
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Algorithm 5.1: Backward Computation of Probabilistic Provenance
Inference

Input: A tuple T produced by a processing element Pk, for which
fine-grained provenance is requested

Output: Set of input tuples ICi for each input view Vi which form
the inferred window producing T

1 referencePoint← getTransactionTime(T);
2 noOfInputViews← getNoOfInputViews(Pk);
3 processingDelayDist← getProcessingDelayDist(Pk);
4 for i← 1 to noOfInputViews do
5 inputView← getInputViewID(Pk, i);
6 windowType← getWindowType(inputView);
7 windowSize← getWindowSize(inputView);
8 samplingIntervalDist←

getSamplingIntervalDist(inputView);
9 if windowType = "tuple" then /* tuple-based windows */

10 offset← calculateOffset(samplingIntervalDist,
11 processingDelayDist);
12 ICi ← reconstructTupleWindow(inputView,windowSize,
13 referencePoint,offset);
14 else /* time-based windows */

15 triggerInterval← getTriggerInterval(Pk);
16 alphaDist

← calculateAlphaDist(windowSize, triggerInterval,
17 samplingIntervalDist);
18 betaDist

← calculateBetaDist(windowSize, triggerInterval,
19 samplingIntervalDist);
20 offset

← calculateOffset(samplingIntervalDist,alphaDist
21 betaDist,processingDelayDist);
22 ICi ← reconstructTimeWindow(inputView,windowSize,
23 referencePoint,offset);
24 end
25 end

142



5.7 backward computation

5.7.1 Forming the Inferred Window in Tuple-based Windows

Forming the inferred window requires to calculate the offset value based
on the given P(δk) and P(λi) distributions as mentioned in line 10 of Algo-
rithm 5.1. Afterward, the calculated offset value is used to reconstruct the
original window, i.e., the inferred window, containing a set of tuples, ICi ,
for each input view Vi (line 12 in Algorithm 5.1). The upper bound of the
inferred window in case of a tuple-based window is calculated based on
the following equation.

upperBound = referencePoint− offset (5.1)

Please note that, the upper bound of the inferred window refers to a time
value. After calculating the upper bound, reconstructTupleWindow function
considers only the latest windowSize number of tuples whose transaction
time is less than or equal to the upperBound to form the inferred window.

As already defined, the offset value refers to the distance in time between
the upper bound of the inferred window and the reference point. Therefore, Offset

calculationbased on the definition, 0 6 offset 6 max(δk), where max(δk) refers to
the maximum value of the random variable δk. The offset value has to be
calculated in such a way that in most cases, the resulting inferred window
contains all the potential input tuples which contributed to produce the
chosen output tuple. The calculation of offset value involves the joint prob-
ability distribution of P(λi) and P(δk) as well as the Failure Condition 5.1
which indicates that wrong provenance can be inferred by the inclusion
of a non-contributing input tuple in the inferred window, i.e., if λi 6 δk

holds. The following equation calculates the offset value.

offset = arg max
offset

f(offset)

= arg max
offset

{

max(λi)∑
x=min(λi)

max(δk)∑
y=min(δk)

{P(λi = x, δk = y− offset)

| x > y− offset ∧ y− offset > 0 } } (5.2)

Based on Equation 5.2, the offset value is the value for which f(offset)
has the maximum value. The value of f(offset) represents the estimated
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Table 5.1: Joint Probability Distribution of given P(λi) and P(δk)

λi = x δk = y P (λi = x, δk = y)

1 1 0.252 (a)

1 2 0.118 (b)

2 1 0.265 (c)

2 2 0.125 (d)

3 1 0.163 (e)

3 2 0.077 (f)

accuracy based on the given offset, joint probability distribution of P(λi)
and P(δk) as well as Failure Condition 5.1.

Table 5.1 shows the joint probability distribution of given P(λi) and
P(δk). In this case, we assume that P(λi), has the following values: P(λi =
1) = 0.37, P(λi = 1) = 0.39, P(λi = 1) = 0.24 with mean(λi) = 2. Moreover,
we also assume that P(δk), has the following values: P(δk = 1) = 0.68,
P(δk = 2) = 0.32 with mean(δk) = 1. Next, the value of P(λi = x, δk = y)

is calculated which is shown in the right-most column of Table 5.1.
First, we set offset value to 0 which means that the reference point and the

upper bound of the inferred window represent the same point in time. InExample

this case, based on Failure Condition 5.1, accurate provenance information
can be inferred in 51% (c+e+f) cases only. However, if the value of offset
is set to 1, the chance of inferring accurate provenance can be improved.
Since offset refers to the distance between the upper bound of the inferred
window and the reference point, setting the value of offset to 1 means that
the value of δk is also subtracted by 1. According to the Failure Condition
5.1 and Table 5.1, the chance of accurately inferred provenance is increased
to 88% (a+c+d+e+f). We cannot set offset value to 2 because it violates one
of the conditions, i.e., y − offset > 0, of Equation 5.2. In this example,
setting offset to 1 returns the maximum value of f(offset) which is the esti-
mated accuracy of applying the probabilistic provenance inference method.
Therefore, the offset value is set to 1 in Equation 5.1 calculating the upper
bound of the inferred window.
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5.7.2 Forming the Inferred Window in Time-based Windows

In case of a time-based window, the backward computation phase recon-
structs the original window, i.e., forming the inferred window, by calcu-
lating the upper bound and the lower bound of the window based on the
following equations.

upperBound = referencePoint− offset (5.3)

lowerBound = referencePoint− offset−windowSize (5.4)

The probabilistic provenance inference method calculates the offset value
in such a way that the inference-based method could infer accurate prove-
nance in most cases. There are two possible ways to have a failure, i.e., inac-
curate provenance, during the inference mechanism. First, a failure could
occur if a contributing input tuple is excluded from the inferred window.
According to Failure Condition 5.2, this could happen if the following holds:
αi
k < δk. Second, a failure could occur if a non-contributing input tuple is

included into the inferred window. According to Failure Condition 5.3, this
could happen if the following holds: λi − βik < δk. Since both αik and
βi
k values participate to estimate the accuracy of the inferred provenance

information, it is necessary to compute these distributions to calculate the
offset value.

We propose a novel tuple-state graph, that has to be constructed by fa-
cilitating Markov chain model [16], to compute both P(αik) and P(βi

k)

distributions which help us to infer fine-grained data provenance. A tuple-
state graph represents the transitions from one state to another, where state
is referring to the position of the incoming input tuple within a window,
based on the sampling interval λi of the input view Vi.

To build the tuple-state graph, we consider the workflow provenance ex-
plicated in Figure 5.4. Figure 5.4 shows that the sampling interval distri-
bution of input view V4, P(λ4) has the following values: P(λ4 = 1) = 0.37,
P(λ4 = 2) = 0.39 and P(λ4 = 3) = 0.24 where mean(λ4) = 2 time units.
Figure 5.4 also shows that the processing delay distribution of P5, P(δ5)
has the following values: P(δ5 = 1) = 0.68, P(δ5 = 2) = 0.32. In the next
section, we discuss the mechanism to build the tuple-state graph, calculating
the corresponding P(α45) and P(β45) distributions using the given P(λ4),
P(δ5) distributions.
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Figure 5.5: Tuple-state graph Gα

5.7.2.1 Building Tuple-State Graph Calculating P(α45) Distribution

A tuple-state graph, Gα, has to be built to compute the corresponding α45

distribution by facilitating the given P(λ4) and P(δ5) distributions. Each
vertex in a tuple-state graph represents a state, which identifies the position
of a tuple within a window w.r.t. the start of the window. There are two dif-
ferent types of states in a tuple-state graph calculating P(α45) distribution.
These are:

1. First states: These states represent that the current tuple is the first
tuple of a particular window. These are denoted as the arrival times-
tamp of the tuple in the window w.r.t the start of the window, fol-
lowed by a letter ’F’ (e.g. 0F, 1F, 2F). In this case, the arrival times-
tamps indicate the first-tuple appearance interval as discussed in Sec-
tion 5.2.

2. Intermediate states: These states represent the arrival of tuples within
a window without being the first tuple. The states are represented by
the arrival timestamp of the new tuple in the window w.r.t the start
of the window, followed by a letter ’I’ (e.g. 1I, 2I, 3I, 4I).

The tuple-state graph Gα has a set of vertices and directed edges, i.e.,
Gα = (Vα,Eα). Therefore, first, a set of first and intermediate states areSet of

vertices added as vertices/nodes. The number of vertices in both states is bounded
by the window size. It can be expressed by the following formula.

Vα =

WS4
5−1⋃

j=0

{jF, jI} (5.5)
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where WS45 be the window size of the window defined over the input view
V4.

Next, we add directed edges from all vertices based on the values of
P(λ4). A directed edge is defined via the start vertex (from vertex), the end
vertex (to vertex), and the probability of this edge occurring (weight).

A directed edge can connect two states within the same window or it
can cross the window boundary. Therefore, the set of directed edges is a Set of

directed
edges

collection of two other sets. The first set defines the directed edges from
every point (state) in the window to a later point (state) in the window
without crossing the window boundary. In this case, the start vertex could
be a first or an intermediate state, while the end vertex must be an intermedi-
ate state. Assume that, TR5 be the trigger interval of P5, the formula below
represents these directed edges, where the weight associated to a directed
edge corresponds to the probability of two subsequent tuples arriving with
a distance of k− j time units.

Eα
1 =

WS4
5−1⋃

j=0

j+max(λ4)⋃
k=j+1

{ { ( jF,kI,P(λ4 = k− j) ),

( jI,kI,P(λ4 = k− j) ) } | k < WS45 ∧ k < TR5} (5.6)

The second set defines directed edges which are crossing the window
boundary. In this case, the start vertex is either a first or an intermediate
state, while the end vertex is a first state. The formula below represent
these directed edges.

Eα
2 =

WS4
5−1⋃

j=0

j+max(λ4)⋃
k=j+1

{ { ( jF,k ′F,P(λ4 = k− j) ),

(jI,k ′F,P(λ4 = k− j) ) } | k > TR5 ∧ k ′ = k mod TR5} (5.7)

The complete set of directed edges in Gα is the union of Eα1 and Eα2.

Eα = Eα
1 ∪ Eα2

Figure 5.5 depicts the simplified tuple-state graph Gα (vertices with no
incoming edges are discarded). Given, P(λ4 = 1) = 0.37, P(λ4 = 2) = 0.39 Example

and P(λ4 = 3) = 0.24. Starting from the vertex ’0F’, directed edges are
added to ’1I’, ’2I’ and ’3I’ with weight 0.37, 0.39 and 0.24, respectively.
These directed edges are the elements of set Eα1. As another example,
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Table 5.2: Observed vs. Computed P(α45) Distribution

α4
5 = u Observed P(α45 = u) Computed P(α45 = u)

0 0.532 0.535

1 0.347 0.337

2 0.121 0.128

starting from vertex ’4I’, we add directed edges to ’0F’, ’1F’ and ’2F’ with
weight 0.37, 0.39 and 0.24, respectively. These directed edges are elements
of set Eα2. This process will be continued for all vertices to get a complete
Gα.

The long-term behavior of a Markov chain enters a steady state, i.e.,
the probability of being in a state will not change with time [47]. In theSteady-

state steady state, the vector sα represents the average probability of being in a
particular state based on the tuple-state graph Gα. To optimize the steady
state calculation, vertices with no incoming edges are discarded (see Figure
5.5).

Assuming uniformly distributed initial probabilities, the steady state of
the Markov model can be derived. The steady state distribution vector sα
for the tuple-state graph, Gα is given below.

sα =

(
0F 1F 2F 1I 2I 3I 4I

0.20 0.13 0.05 0.07 0.15 0.20 0.20

)
The probabilities of states with suffix ’F’ form the α45 distribution, i.e.,

the probabilities of the first tuple in a window arriving after a specific
time interval. The components of the states ’0F’, ’1F’, ’2F’ represent the
probability of the value of α45 = 0, 1 and 2, respectively. After normalizing
the probability of these values, we get the computed P(α45) distribution,
shown in Table 5.2.

5.7.2.2 Building Tuple-state Graph Calculating P(β45) Distribution

Along the lines of the previous section, P(β45) distribution indicating the
probability distribution on the distance between the last tuple in a window
and the end of the window can be calculated.
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For the computing processing element P5 shown in Figure 5.4, a tuple-
state graph,Gβ is built to compute the corresponding P(β45) distribution by
facilitating the given P(λ4) and P(δ5) distributions. As already mentioned
in Section 5.7.2.1, each vertex in a tuple-state graph represents a state, which
identifies the position of a tuple within a processing window w.r.t. the start
of the window. However, unlike Gα, the tuple-state graph Gβ has different
types of states listed below.

1. Intermediate states: These states represent the arrival of tuples within
a window without being the last tuple of that window. The states are
represented by the arrival timestamp of the new tuple in the window
w.r.t the start of the window, followed by a letter ’I’ (e.g. 0I, 1I, 2I, 3I,
4I).

2. Last states: These states represent that the current tuple is the last
tuple of a particular window. These are denoted as the arrival times-
tamp of the tuple in the window w.r.t the start of the window, fol-
lowed by a letter ’L’ (e.g. 2L, 3L, 4L). In this case, the arrival times-
tamps indicate the last-tuple disappearance interval as discussed in Sec-
tion 5.2.

Set of
verticesThe tuple-state graph Gβ has a set of vertices and directed edges, i.e.,

Gβ = (Vβ,Eβ). Therefore, first, a set of intermediate and last states are
added as vertices/nodes. The number of vertices in both states is bounded
by the window size. It can be expressed by the following formula.

Vβ =

WS4
5−1⋃

j=0

{jL, jI} (5.8)

where WS45 be the window size of the window defined over the input view
V4.

Next, we add directed edges between the vertices based on the values
of P(λ4) distribution. There could be three different sets of directed edges Set of

directed
edges

in Gβ. The first set includes directed edges connecting two points (states)
within the same window. The second set includes directed edges repre-
senting that the current tuple is the last tuple in the window. The third set
includes directed edges representing the transitions crossing the window
boundary.
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Figure 5.6: Tuple-state graph Gβ

The first set defines directed edges, starting from every point (state) in
the window to a later point (state) in the window without crossing the win-
dow boundary. In this case, both start and end vertex must be intermediate
states. Assume that, TR5 be the trigger interval of P5, the formula below
represents these directed edges, where the weight associated to an edge
corresponds to the probability of two subsequent tuples arriving with a
distance of k− j time units.

Eβ
1 =

WS4
5−1⋃

j=0

j+max(λ4)⋃
k=j+1

{ { ( jI,kI,P(λ4 = k− j) ) }

| k < WS4
5 ∧ k < TR5} (5.9)

The second set defines directed edges, from an intermediate state to a last
state, indicating that the current tuple could be the last tuple within the
window. In this case, the arrival timestamps of both intermediate and last
state remains the same. As an example, this set includes a directed edge
from ’3I’ to ’3L’ representing that the last tuple within this window arrives
at timestamp 3. The weight of this directed edge is the sum of the probabil-
ity of crossing the window boundary from the last state (’3L’) based on the
values of P(λ4). The formula below represents this set of directed edges.

Eβ
2 =

WS4
5−1⋃

j=WS4
5−max(λ4)

{ {(jI, jL,
j+max(λ4)∑
k=j+1

P(λ4 = k− j))} |k > TR5 }

(5.10)
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The third set defines the directed edges that cross the window boundary,
i.e., transition from a last state to an intermediate state based on the values
of P(λ4). Since there could be multiple directed edges originating from
a particular last state and connecting towards multiple intermediate states
(e.g. from ’3L’ to ’0I’ and ’1I’), the weight of a particular directed edge is
normalized w.r.t. the sum of the probability of directed edges originating
from the same last state. The formula representing these directed edges is
given below:

Eβ
3 =

WS4
5−1⋃

j=0

j+max(λ4)⋃
k=j+1

{ { (jL,k ′I,
P(λ4 = k− j)∑j+max(λ4)

k=j+1 P(λ4 = k− j)
)

| k > TR5 ∧ k ′ = k mod TR5} } (5.11)

The complete set of edges in Gβ is:

Eβ = Eβ
1 ∪ Eβ2 ∪ Eβ3

Figure 5.6 depicts the simplified tuple-state graph Gβ (vertices with no
incoming edges are discarded). Given, P(λ4 = 1) = 0.37, P(λ4 = 2) = 0.39 Example

and P(λ4 = 3) = 0.24. Starting from the vertex ’0I’, directed edges are
added to ’1I’, ’2I’ and ’3I’ with weight 0.37, 0.39 and 0.24, respectively.
These directed edges are the elements of set Eβ1. As another example,
consider the vertex ’3I’. There is a directed edge from ’3I’ to ’3L’, indicating
that this tuple is the last tuple within the window. The weight of this edge is
the sum of the probability of having cross-boundary transition from state
’3L’ which is P(λ4 = 2) + P(λ4 = 3) = 0.39+ 0.24 = 0.63. This directed edge
is an element to the set Eβ2. Directed edges are also added from the vertex
’3L’, connecting towards ’0I’ and ’1I’ with weight 0.39÷ 0.63 = 0.62 and
0.24÷ 0.63 = 0.38, respectively. These directed edges are elements of the
set Eβ3. This is how, all other edges based on the aforesaid formulas are
added to have a complete Gβ.

As already discussed in Section 5.7.2.1, the long-term behavior of a
Markov chain enters a steady state. In the steady state, the vector sβ rep- Steady-

stateresents the average probability of being in a particular state based on the
graph Gβ. To optimize the steady state calculation, vertices with no incom-
ing edges are discarded (see Figure 5.6). Assuming uniformly distributed
initial probabilities, the steady state of the Markov model can be derived.
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Table 5.3: Observed vs. Computed P(β45) Distribution

β4
5 = v Observed P(β45 = v) Computed P(β45 = v)

1 0.520 0.535

2 0.346 0.337

3 0.134 0.128

The steady state distribution vector sβ for the tuple-state graph, Gβ is given
below.

sβ =

(
0I 1I 2I 3I 4I 2L 3L 4L

0.146 0.146 0.146 0.146 0.146 0.035 0.092 0.146

)
The probabilities of states with suffix ’L’ form the β45 distribution, i.e.,

the probabilities of the last tuple in a window arriving after a specific time
interval w.r.t the start of the window. For each last state, the corresponding
value of β45 can be calculated based on the following formula.

β4
5 =WS4

5 − arrival timestamp of the state

Suppose, the last state is ’2L’. Therefore, the value of the corresponding
β4
5 is 5− 2 = 3 time units. Based on this, the probabilities of the states

’2L’, ’3L’, ’4L’ represent the probability of the value of β45 = 3, 2 and 1,
respectively. After normalizing the probability of these values, we get the
computed P(β45) distribution which is shown in Table 5.3.

Both P(α4
5) and P(β4

5) distributions are used to calculate the offset
value. In next section, we explain the process of calculating offset value.

5.7.2.3 Calculating Offset

As defined in Section 5.7, the offset value refers to the distance in time
between the upper bound of the inferred window and the reference point.
Therefore, based on the definition, 0 6 offset 6 max(δk), where max(δk)
refers to the maximum value of the random processing delay of Pk. The off-
set value has to be calculated in such a way that in most cases, the resulting
inferred window contains all the potential input tuples which contributed
to produce the chosen output tuple. In case of a time-based window, the
offset value is calculated by facilitating the joint probability distribution
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of P(αik), P(βik), P(λi) and P(δk) based on Failure Condition 5.2 and 5.3
indicating situations where wrong provenance can be inferred. Failure Con-
dition 5.2 indicates that a contributing input tuple could be excluded from
the inferred window if the following condition holds: αik < δk. Failure Con-
dition 5.3 indicates that a non-contributing input tuple could be included
into the inferred window if the following condition holds: λi − βik < δk.
Considering these failure conditions, the following equation calculates the
offset value for a time-based window.

offset = arg max
offset

f(offset)

= arg max
offset

{

max(αi
k)∑

u=min(αik)

max(βi
k)∑

v=min(βi
k)

max(λi)∑
x=min(λi)

max(δk)∑
y=min(δk)

{P(αi
k = u, δk = y− offset)× P(βik = v, λi = x, δk = y− offset)

| u > y− offset ∧ x− v > y− offset ∧ y− offset > 0}}

(5.12)

Based on Equation 5.12, the offset value is the value for which f(offset)
has the maximum value. The value of f(offset) represents the estimated
accuracy based on the given offset, joint probability distribution of P(αik),
P(βi

k), P(λi) and P(δk) as well as Failure Condition 5.2 and 5.3.
Figure 5.4 shows an example workflow based on a time-based window

defined over the input view V4. It also shows the given P(λi) and P(δk)
distributions. In previous sections, we have computed P(αik) and P(βik)
distributions based on these given P(λi) and P(δk) distributions. To calcu-
late the offset value for the given workflow shown in Figure 5.4, we use the
aforesaid distributions.

First, we set offset value to 0 which means that the reference point and
the upper bound of the inferred window represent the same point in time.
In this case, based on Equation 5.12, estimated accuracy of inferred prove- Results

nance information is around 30%. However, if the value of offset is set to 1,
the chance of inferring accurate provenance is improved. Since offset refers
to the distance between the upper bound of the inferred window and the
reference point, setting the value of offset to 1 means that the value of δk is
also subtracted by 1. According to Equation 5.12, the chance of accurately
inferred provenance is increased to 86%. We cannot set offset value to 2 be-
cause it violates one of the conditions, i.e., y− offset > 0, of Equation 5.12.
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Figure 5.7: Illustration of the backward computation phase

In this example, setting offset to 1 returns the maximum value of f(offset)
which is the estimated accuracy of applying the probabilistic provenance
inference method. Therefore, the offset value is set to 1 in Equation 5.3 and
5.4, calculating the upper bound and the lower bound of the inferred window.

Figure 5.7 depicts the working mechanism of the backward computation
phase in the probabilistic provenance inference method. The left-side ofExample

Figure 5.7 shows the available data products/tuples in both input and
output view, i.e., V4 and V5, respectively. The user chooses a tuple T with
transaction time 12 from the output view V5, for which he/she initiates the
request to infer fine-grained data provenance. The tuple T is also referred
to as the chosen tuple and the transaction time of the chosen tuple is referred
to as the reference point.

The right-side of Figure 5.7 shows the inferred window based on Algo-
rithm 5.1 for the workflow shown in Figure 5.4. In this workflow, the
window is time-based. Therefore, according to Equation 5.3 and 5.4 and
setting the value of offset to 1, both the upper bound and the lower bound
of the inferred window is calculated. The inferred window contains tuples
from the input view V4 whose transaction time is within the range [6, 11).
Therefore, the inferred window holds the tuples t7 and t9 in view V4. These
tuples are enclosed within the light-blue shaded rectangle over V4 in Fig-
ure 5.7. This set of tuples is considered in the forward computation phase
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which associates the exact set of contributing input tuples to the selected
output tuple.

5.8 forward computation of probabilistic prove-
nance inference

The forward computation phase establishes the data-dependent relationship
between the input data products/tuples within the inferred window and
the chosen output data product/tuple. This data-dependent relationship
is referred to as fine-grained data provenance. The forward computation
phase of the probabilistic provenance inference method works exactly in
the same way the forward computation phase of the basic provenance infer-
ence method does. Therefore, the algorithm of forward computation phase
(see Algorithm 4.2) is not repeated in this section. Nevertheless, we explain
the mechanism involved with forward computation phase briefly.

First, relevant information about a computing processing element like
number of contributing input tuples, number of produced output tuples, con-
tributing input views, number of input views is retrieved from the explicated
workflow provenance as shown in Figure 5.4.

Next, the forward computation phase infers the exact set of contributing
input tuples depending on the type of the computing processing element
and retrieved information. Suppose, for computing processing elements
implementing operations where only one input tuple contributes to the
output tuple such as a project or an union operation, we have to identify
the relevant contributing input tuple from the appropriate input view. To
accomplish that, we need to facilitate the assumptions on the order of in-
put views, the contributing input views and order of tuples in the output
view, discussed in Section 5.5, to determine the position of the chosen tu-
ple in the output view. Based on the position of the chosen tuple and the
assumption on the order of tuples in the output views, forward compu-
tation phase can find the exact input tuple which contributed to produce
the selected output tuple. In cases where all input tuples contribute to the
output tuple, all tuples accessible from the inferred window are selected.
Therefore, the set of contributing tuples is the union of the set of input
tuples within the inferred window per input view.

Figure 5.8 depicts the forward computation phase. In this example, since Example

the computing processing element P5, shown in Figure 5.4, performs an av-
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Figure 5.8: Illustration of the forward computation phase

erage operation, the input-output ratio is n : 1, i.e., all tuples in the inferred
window contributed to produce the output tuple. Therefore, forward com-
putation phase concludes that the tuples t7 and t9 in the input view V4

contributed to produce the chosen tuple t12 in the output view V5. These
contributing input tuples are represented by the shaded tuples within the
inferred window in the right side of Figure 5.8. In this example, we can
see that the probabilistic provenance inference method can infer accurate
fine-grained data provenance.

5.9 evaluation

The probabilistic provenance inference method is evaluated based on the work-
flow presented in Section 5.1. The shaded part in the Figure 5.1 is consid-
ered for this evaluation. The probabilistic provenance inference method infers
fine-grained data provenance by facilitating the associated workflow prove-
nance as shown in Figure 5.4. In this figure, the computing processing el-
ement P5 is implementing an average operation. The view, V4, is the input
view of P5 and the view, V5 is the output view produced by P5. The col-
lection of tuples in both input and output view is referred to as sensor data.
In this section, we describe the evaluation criteria, methods, dataset, test
cases and also discuss the evaluation results.
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5.9.1 Evaluation Criteria and Methods

The probabilistic provenance inference method is evaluated based on these
criteria: i) storage consumption and ii) accuracy. The second research ques- Criteria

tion (RQ 2) of this thesis is about the challenge of managing fine-grained
data provenance under different system dynamics at reduced cost in terms
of storage consumption as discussed in Section 1.4. The probabilistic prove-
nance inference method infers fine-grained data provenance at reduced
storage cost under variable processing delay and variable sampling inter-
val. Therefore, the probabilistic provenance inference method addresses
RQ 2 and provides a solution. Since the primary goal of RQ 2 is to have
fine-grained data provenance at reduced storage costs, one of the evalua-
tion criterion is the storage consumption by provenance data. Furthermore,
the overall goal of the inference-based framework is to provide accurate
provenance information under a given system dynamics. Therefore, an-
other evaluation criterion is the accuracy of the inferred provenance infor-
mation.

As discussed in Section 4.7.1, we developed two implementations of
documenting fine-grained data provenance explicitly. These are: i) explicit Methods

provenance and ii) improved explicit provenance method. The storage con-
sumption of the probabilistic provenance inference method to maintain prove-
nance data is compared with explicit provenance, improved explicit provenance
and basic provenance inference method, discussed in Chapter 4. It may be
noted that since both basic provenance inference and probabilistic provenance
inference method are only required to store the transaction time for all tu-
ples in sensor data, i.e., tuples in both input and output view, to infer fine-
grained data provenance, they have the same storage consumption.

The probabilistic provenance inference method is also evaluated in terms
of accuracy. The accuracy of the inferred provenance information is mea-
sured by facilitating the traditional fine-grained provenance information,
also known as explicit provenance, as a ground truth. We also compare the
accuracy between the basic provenance inference and the probabilistic prove-
nance inference method under variable processing delay and variable sam-
pling interval.
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5.9.2 Dataset

A real dataset3 measuring electrical conductivity of the water, collected
by the RECORD project, discussed in Section 5.1, is used to evaluate the
performance of different methods. The experiments are performed on a
underlying PostgreSQL 8.44 database and the Sensor Data Web5 platform.
The input dataset contains 30000 tuples representing a six-month period
from July-December 2009 and requires 7200 KB of storage space.

Besides this real dataset, a simulation using artificial data with vari-
able processing delay and variable sampling interval is also performed to
compare the achieved accuracy of inference-based methods such as basic
provenance inference and probabilistic provenance inference. Since probabilistic
provenance inference method can also estimate the accuracy beforehand, the
estimated accuracy of the probabilistic provenance inference method is also
reported in results.

5.9.3 Test cases

The evaluation of the probabilistic provenance inference method is performed
based on two sets of test cases. The first set of test cases use a real dataset,
containing 30000 tuples, as discussed in Section 5.9.2. These test cases are
used to compare different methods in terms of storage consumption and
accuracy. All these test cases are based on the sliding windows. How-
ever, there is a variation in the type and size of the windows as well
as the amount of slide. Table 5.4 shows the window size, trigger inter-
val along with some other parameters associated with sampling interval
and processing delay of each test case. These test cases with constantTest case

set I processing delay and constant sampling interval are also used to evalu-
ate the basic provenance inference method, discussed in Chapter 4. The test
cases in Table 5.4, have examples of both tuple-based windows (test case
S1.Tuple.1 and S1.Tuple.2) and time-based windows (test case S1.Time.3 and
S1.Time.4). Furthermore, some test cases have overlapping windows (test
case S1.Tuple.1 and S1.Time.3) and the others have non-overlapping win-
dows (test case S1.Tuple.2 and S1.Time.4). For all test cases shown in Table
5.4, we assume that both sampling interval distribution, i.e., P(λ4) and pro-

3 Available at http://data.permasense.ch/topology.html#topology
4 Available at http://www.postgresql.org/
5 Available at http://sourceforge.net/projects/sensordataweb/
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Table 5.4: Test Case Set I : Parameters of Different Test Cases used for the Evalua-
tion using Real Dataset

Test Window Trigger mean max mean max

case id size interval (λ4) (λ4) (δ5) (δ5)

S1.Tuple.1 3 1 2 s 3 s 1 s 2 s

S1.Tuple.2 3 3 2 s 3 s 1 s 2 s

S1.Time.3 6 s 2 s 2 s 3 s 1 s 2 s

S1.Time.4 6 s 6 s 2 s 3 s 1 s 2 s

cessing delay distribution, i.e., P(δ5) follow Poisson distribution and some
of the parameters of these distributions such as mean value and max value,
are also reported in Table 5.4.

The second set of test cases is introduced to compare the accuracy of
inferred provenance information. These test cases are used in a simulation
using artificial data. Therefore, these are not used to evaluate the storage Test case

set IIconsumption. The simulation is performed for 10000 time units. All these
test cases have time-based windows so that we can validate the concept of
building tuple-state graph to calculate the optimal offset value which is used
by the probabilistic provenance inference method to infer fine-grained data
provenance as discussed in Section 5.7. Table 5.5 shows the window size,
trigger interval along with some other parameters associated with sam-
pling interval and processing delay of each test case. For all test cases in
Set II, we assume that both sampling interval distribution, i.e., P(λ4) and
processing delay distribution, i.e., P(δ5) follows Poisson distribution and
some of the parameters of these distributions such as mean value and max
value, are reported in Table 5.5.

The test cases shown in Table 5.5 are chosen in such a way that each of
them has some variety in their parameters compared to the others. Test
case S2.Time.1 is used to explain the probabilistic provenance inference
method as shown in Figure 5.4. Test case S2.Time.2 differs only in the win-
dow size from test case S2.Time.1. Test case S2.Time.2 and S2.Time.3 are
almost similar to each other except the value of trigger interval. Test case
S2.Time.4 and S2.Time.5 are also different, in their corresponding P(δ5) dis-
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Table 5.5: Test Case Set II : Parameters of Different Test Cases used for the Evalu-
ation using Simulation

Test Window Trigger mean max mean max

case id size interval (λ4) (λ4) (δ5) (δ5)

in time in time in time in time in time in time

units units units units units units

S2.Time.1 5 5 2 3 1 2

S2.Time.2 10 5 2 3 1 2

S2.Time.3 10 10 2 3 1 2

S2.Time.4 10 10 3 5 1 2

S2.Time.5 10 10 3 5 2 3

S2.Time.6 10 10 4 6 1 2

tribution. Test case S2.Time.3, S2.Time.4 and S2.Time.6 have the same values
for all parameters except the P(λ4) distribution. These test cases are used
to explain the influence of different parameters such as window size, trig-
ger interval, sampling interval, processing delay etc. over the accuracy of
the inferred provenance information.

5.9.4 Storage Consumption

The storage consumption by different methods to maintain fine-grained
data provenance is one of the major evaluation criteria. We compare the
storage consumption among explicit provenance, improved explicit provenance,
basic provenance inference and probabilistic provenance inference method by
facilitating the test cases in set I (see Table 5.4), which are defined for the
workflow shown in Figure 5.4. In the result, the storage taken by the sensor
data, i.e., collection of both input and output data products, is also reported
for all test cases.

The explicit provenance and the improved explicit provenance method main-
tain fine-grained data provenance explicitly in separate relations. The schema
diagrams of these two methods is shown in Figure 4.6 and 4.7, respectively.
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Figure 5.9: Comparison of Storage Consumption among different methods using
test case set I

The storage space taken by the relations maintaining provenance data is
considered as the storage consumption of the explicit provenance and the
improved explicit provenance method. For the basic provenance inference and
the probabilistic provenance inference method, the storage required by keep-
ing the transaction time for all input and output data products is considered
as the storage consumption.

Figure 5.9 shows the storage consumption by different methods for all
test cases in test case set I, shown in Table 5.4. Since all test cases are de-
fined over the workflow shown in Figure 5.4, they perform an average oper-
ation. Test case S1.Tuple.1 has overlapping, tuple-based window with win- Overlap-

ping
Tuple-based

dow size of 3 and trigger interval of 1. In this case, the explicit provenance
method takes around 5400 KB of storage space to maintain fine-grained
data provenance. The improved explicit provenance method takes less space
than the explicit provenance method which is 4950 KB of storage space. Both
basic provenance inference and probabilistic provenance inference method take
1200 KB of storage space which is 22% and 24% of storage space consumed
by the explicit provenance and the improved explicit provenance method to
maintain fine-grained data provenance.

Test case S1.Tuple.2 has non-overlapping, tuple-based windows. In this Non-
overlapping
Tuple-based

case, the explicit provenance method takes around 1850 KB of storage space
to maintain fine-grained data provenance. Interestingly, the improved ex-
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plicit provenance method takes more space than the explicit provenance method
which is 2600 KB of storage space. Since the subsequent windows do not
overlap and each input tuple contributes exactly once to produce one out-
put tuple, the improved explicit provenance method has more overhead than
the explicit provenance method. Both basic provenance inference and probabilis-
tic provenance inference method take 820 KB storage space which is 44% and
32% of storage space consumed by the explicit provenance and the improved
explicit provenance method. In test case S1.Tuple.2, the ratio of saving stor-
age space by inference-based methods is less compared to the test case
S1.Tuple.1 because of no overlap between subsequent windows.

Test case S1.Time.3 and S1.Time.4 are the examples of time-based overlap-
ping and non-overlapping windows, respectively. The result of S1.Time.3Time-based

windows and S1.Time.4 are similar to tuple-based window test case S1.Tuple.1 and
S1.Tuple.2, respectively. Figure 5.9 shows that the inference-based methods
also outperform the explicit provenance and improved explicit provenance in
these two test cases as well.

Please note that the reported ratio depends on the chosen window size
and trigger specification and if the window size is larger and there is a big
overlap between subsequent windows, both basic provenance inference and
probabilistic provenance inference method perform even better.

5.9.5 Accuracy

The accuracy of the inferred provenance information is evaluated and com-
pared between the probabilistic provenance inference and the basic provenance
inference. The accuracy is measured by comparing the inferred fine-grained
data provenance of each output data product to the ground truth provided
by the explicit provenance method for a particular test case. We facilitate
both test case set I and II to evaluate the accuracy of both probabilistic prove-
nance inference and basic provenance inference. Since, probabilistic provenance
inference method can also estimate the accuracy by considering the given
distributions only, both estimated and achieved accuracy of the probabilistic
provenance inference method are reported.

Figure 5.10 shows the accuracy of probabilistic provenance inference and
basic provenance inference for all test cases in set I, shown in Table 5.4. AllTest case

set I these test cases have variable processing delay and variable sampling inter-
val. As already discussed, the basic provenance inference method is prone
to infer inaccurate provenance information under variable processing delay
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Figure 5.10: Comparison of Accuracy between different inference-based methods
using test case set I

and variable sampling interval. This is quite evident in the result reported
in Figure 5.10. For test case S1.Tuple.1 and S1.Tuple.2, the basic provenance
inference method infers only 52% and 51% accuracy, respectively, while
the probabilistic provenance inference method infers 88% accuracy in both
cases. In case of time-based windows, i.e., test case S1.Time.3 and S1.Time.4,
the basic provenance inference method performs even poorer in terms of
accuracy. It only provides around 40% accuracy for these two cases while
the probabilistic provenance inference method achieves around 84% accu-
racy. Therefore, considering all test case in set I, probabilistic provenance
inference method achieves higher accuracy than the basic provenance in-
ference method at the same storage consumption.

We also evaluate the accuracy of these two inference-based methods by
a simulation facilitating the test cases in set II, shown in Table 5.5. All Test case

set II
6 test cases have time-based windows with different parameters. Figure
5.11 shows the accuracy of probabilistic provenance inference and basic
provenance inference method for these test cases. Like the result of test
case set I, the probabilistic provenance inference method achieves higher
accuracy than the basic provenance inference method for all test cases in
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Figure 5.11: Comparison of Accuracy between different inference-based methods
using test case set II

set II. Based on this result and failure conditions to infer wrong provenance
information, we make a few observations which are given below.Influence

over
accuracy

In test case S2.Time.1 and S2.Time.2, only the window size is changed
while the other parameters remain unchanged. In both cases, we achieve
the same level of accuracy by applying the probabilistic provenance infer-
ence method. Furthermore, Failure Condition 5.2 and 5.3 (see Section 5.3)Window

size indicate that window size has no part to play deciding whether accurate
or inaccurate provenance can be inferred. Therefore, it seems that window
size does not influence the accuracy.

Next, we compare the accuracy achieved for test case S2.Time.2 and
S2.Time.3. These two cases have the same parameters except the triggerTrigger

interval interval. The achieved accuracy is similar for both test cases. Furthermore,
the trigger interval is not used to defined Failure Condition 5.2 and 5.3.
Therefore, it could be possible that trigger interval has very little influence to
the accuracy.

Table 5.5 shows that test case S2.Time.3, S2.Time.4 and S2.Time.6 has theSampling
interval same set of parameters except mean(λ4) and max(λ4). It means that they

have different sampling interval distribution P(λ4). Figure 5.12a shows the
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Figure 5.12: Influencing Parameters over Accuracy

accuracy of the inference-based methods for these 3 test cases. The highest
accuracy is achieved in test case S2.Time.6 and the lowest one is achieved in
test case S2.Time.3. Table 5.5 shows that among these 3 test cases, the mean
sampling interval, mean(λ4), is the highest in S2.Time.6 and is the lowest
in S2.Time.3. In Failure Condition 5.2 and 5.3, we can also see that value of
λi takes a part to decide whether the inference would provide accurate
or inaccurate provenance. Based on Failure Condition 5.2 and 5.3, keeping
δk values the same and increasing λi values would definitely decrease the
chance of a failure. Therefore, this analysis might give a useful indication
that the higher the sampling time, the higher the chance of achieving accurately
inferred provenance.

At last, we compare the accuracy between test case S2.Time.4 and S2.Time.5.
These two test cases only differ inmean(δ5) andmax(δ5) values as shown Processing

delayin Table 5.5. Test case S2.Time.4 has smaller processing delay than the test
case S2.Time.5. Figure 5.12b shows the achieved accuracy in these test cases.
It is quite evident from Figure 5.12b that the higher accuracy is achieved
in test case S2.Time.4. Furthermore, processing delay takes a part deter-
mining whether wrong provenance can be inferred or not based on Failure
Condition 5.2 and 5.3. Therefore, it seems a reasonable indication that the
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smaller the processing delay, the higher the chance of achieving accurately inferred
provenance.

Furthermore, we can make another observation from Figure 5.10 and
5.11. The estimated accuracy of the probabilistic provenance inference method
is almost similar to the achieved accuracy of the method. Since the es-
timated accuracy can be calculated before the actual experiment, it is a
useful indicator for the applicability of the probabilistic provenance infer-
ence method for a given set of processing delay and sampling interval
distributions.

5.10 discussion

Like the basic provenance inference method discussed in Chapter 4, the
probabilistic provenance inference method has the same set of require-
ments to be satisfied, discussed briefly in Section 5.5. Some of the require-Required

informa-
tion

ments such as explicit system timestamps, temporal ordering are already intro-
duced to process data streams in existing literature. There exist some other
assumptions which need to be satisfied by the underlying system to infer
accurate provenance information. If these assumptions (see Section 5.5) are
not fulfilled by the underlying system, the probabilistic provenance infer-
ence method cannot be applied.

The probabilistic provenance inference method is capable of addressing
operations with constant input-output ratio. In case of an operation withVariable

ratio
operations

variable input-output ratio (e.g. select operation in a database), the proba-
bilistic provenance inference method has to transform the input-output
ratio of that particular operation from the variable ratio to the constant ra-
tio, following the same approach taken by the basic provenance inference
method as discussed in Section 4.8.

The probabilistic provenance inference method is applicable for both
tuple-based and time-based windows. In case of a time-based window, the
proposed method builds a tuple-state graph by facilitating Markov chain
model, to calculate the optimal offset value for constructing the inferred
window. The mechanism of building a tuple-state graph, discussed in Sec-Jumping

windows tion 5.7.2, can handle a non-jumping time-based window, i.e., window size
> trigger interval. However, the introduced mechanism cannot compute
P(αi

k) and P(βik) distributions correctly in case of a jumping time-based
window, i.e., window size < trigger interval. In this case, there could be a few
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input tuples/data products which would not be included in the window
and thus, not be processed. However, the current mechanism considers the
arrival of these ‘not-processed’ input data tuples to build a tuple-state graph,
computing incorrect distributions. However, a little modification in the cur-
rent mechanism of building a tuple-state graph can address a jumping time-
based window. In this case, the number of vertices in the tuple-state graph
is bounded by the value of trigger interval instead of window size. Later, it is
possible to identify the states, i.e., representing a tuple arrival, which fall
outside the actual window based on the given window size. We can ignore
the associated probability of these ‘not-processed’ states and normalize the
distribution to have a correctly computed distribution.

5.11 summary

In this chapter, we presented the probabilistic provenance inference method
that infers fine-grained data provenance accurately at reduced storage costs
under variable processing delay and variable sampling interval. The design
and development of this method was motivated by the second research
question (RQ 2) which posed the challenge of managing fine-grained data
provenance at reduced storage consumption under different system dy-
namics. It is an extension of the basic provenance inference method, dis-
cussed in Chapter 4, to handle different system dynamics.

At the beginning of this chapter, we defined three failure conditions based
on the values of processing delay and sampling interval which indicate
the possibilities of inferring wrong provenance information in case of both
tuple-based and time-based windows. Later, we explained the working
principle of the probabilistic provenance inference method based on a sci-
entific workflow that captures sensor measurements on electrical conduc-
tivity and facilitates these values in an average operation to monitor the
change of electrical conductivity. The proposed method has three major
phases. First, the workflow provenance is documented, showing the data
dependent relationship between processing elements. The next two phases
are executed once the user requests provenance for an output data product.
In the second phase, the proposed method reconstructs the actual window
which had taken part during the execution. The reconstructed window is
referred to as the inferred window. The method constructs the inferred
window in such a way that the optimal accuracy can be achieved. During
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this phase, the method exploits the values of different properties of the
particular computing processing element such as window size, processing
delay distribution, sampling interval distribution. Furthermore, the pro-
posed method can also estimate the accuracy beforehand based on these
distributions and failure conditions. It facilitates Markov chain model to
construct the inferred window for time-based windows. Finally, the prob-
abilistic provenance inference method associates the selected output data
product with the contributing input data products by facilitating the input-
output ratio of the particular processing element.

We evaluated the storage consumption and the accuracy of the proba-
bilistic provenance inference method by comparing it to a few other meth-
ods such as the explicit provenance collection methods and the basic prove-
nance inference method (see Chapter 4), for different test cases. The eval-
uation shows that the proposed method takes less space compared to
the explicit provenance collection methods for both overlapping and non-
overlapping windows. Like the basic provenance inference method, this
method reduces storage consumption at higher magnitude if the window
size and the overlaps between windows are larger. The accuracy of the
probabilistic provenance inference method is calculated by comparing the
inferred provenance information to the ground truth provided by the ex-
plicit provenance inference method. The probabilistic provenance inference
method infers more accurate fine-grained provenance information than
the basic provenance inference method at the same storage consumption.
The estimated accuracy of applying the proposed method is similar to the
achieved accuracy, and thus, the estimated accuracy is a useful indicator to
apply the probabilistic provenance inference method for a given test case.
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6
M U LT I - S T E P P R O B A B I L I S T I C P R O V E N A N C E
I N F E R E N C E

S cientific workflows are widely used by researchers to describe, man-
age and process scientific computation and analysis. Usually, a scientific
workflow represents a data processing chain which has several processing
steps and produces the end result. Each of the processing step in a data
processing chain is realized by a corresponding computing processing el-
ement. A computing processing element processes data products/tuples
in input views and produces data products/tuples in an output view. In
a data processing chain, there could be some computing processing ele-
ments which are producing intermediate results. This intermediate results
could be generated because of applying simple operations over the input
data products. Therefore, the intermediate result sets might not be useful
to scientists. As a result, scientists may not store persistently the interme-
diate result sets into a view while they only maintain the output view
persistently, holding the final result of the scientific computation.

The second research question (RQ 2) in this thesis, described in Section
1.4, focuses the challenge of inferring fine-grained data provenance under
different situations at reduced storage costs. In Chapter 5, we proposed the Challenge

probabilistic provenance inference method that can infer fine-grained data
provenance under variable processing delay and variable sampling inter-
val. This inference-based method can infer fine-grained data provenance
for a scientific workflow with a single processing step, assuming that both
input data products and output data products are persistent. In case of a

Part of this chapter is based on the work: Fine-Grained Provenance Inference for a Large
Processing Chain with Non-materialized Intermediate Views. In Scientific and Statistical
Database Management (SSDBM’12), volume 7338 of LNCS, pages 397–405, Springer, 2012.
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scientific workflow with multiple processing steps, the probabilistic prove-
nance inference method requires all views including the intermediate ones
to be persistent to infer fine-grained data provenance, consuming a lot of
storage space.

Therefore, we need an inference-based method that can infer fine-grained
data provenance based on a given scientific workflow with multiple pro-
cessing steps. The envisioned inference-based method should have the ca-Solution

criteria pability to infer accurate fine-grained data provenance in presence of non-
persistent, intermediate views at a comparatively lower storage costs.

In this chapter, we present the multi-step probabilistic provenance inference
method that can infer fine-grained data provenance for an entire process-
ing chain, i.e., a scientific workflow with multiple processing steps, with
non-persistent, intermediate views. The multi-step probabilistic provenanceMulti-step

Probabilis-
tic

Provenance
Inference

inference is an extension of the probabilistic provenance inference method that
also considers the documented workflow provenance information. This
method assumes that only the input views and the output view are per-
sistent and other intermediate views are non-persistent. Once scientists re-
quest provenance for a particular output data product/tuple, the multi-step
probabilistic provenance inference method provides a fine-grained data prove-
nance graph showing all contributing input tuples to produce that output
tuple as vertices and the relationship between tuples as edges. The method
assigns a probabilistic value to the inferred fine-grained data provenance
graph representing the probability of the accuracy of the inferred graph
by facilitating the processing delay and sampling interval distribution.

The multi-step probabilistic provenance inference method has further ad-
vantages to offer. Like the probabilistic provenance inference method, the
multi-step probabilistic provenance inference method can estimate the achiev-
able accuracy of the inferred provenance at design time by using Markov
chain model and the given processing delay and sampling interval distribu-
tions. The working principle of the proposed method is explained based
on time-based windows only. It should be possible to extend the multi-
step probabilistic provenance inference method to address tuple-based
windows too. At the end of this chapter, we briefly discuss the associ-
ated challenge posed by a tuple-based window and sketch a possible way
of extending the multi-step probabilistic provenance inference method to
address tuple-based windows.

This chapter starts with the description of a scenario based on a real
project followed by the discussion of the example workflow associated
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with the scenario. Next, we define a few basic concepts used to explain the
multi-step probabilistic provenance inference method. Afterward, an out- Chapter

structureline of the multi-step probabilistic provenance inference method is given
followed by the list of information to be required by this method to infer
fine-grained data provenance. Then we discuss and explain the working
principle of the multi-step probabilistic provenance inference method fol-
lowed by the discussion of the mechanism, estimating the accuracy of the
inferred provenance. Finally, we evaluate this method in terms of storage
consumption and accuracy followed by the discussion on a few limitations
of the proposed inference-based method.

6.1 scenario and workflow description

We use the scenario introduced in Section 4.1 to explain the multi-step
probabilistic provenance inference method. In this section, we provide a
brief outline of the scenario and the simplified workflow, defined based on
this scenario.

RECORD1 is one of the projects in the context of the Swiss Experiment2,
which is a platform to enable real-time environmental experiments. In this
project, different types of input data products are collected and then pro-
cessed to monitor river restoration effects. Among these data products,
electrical conductivity of the water is also measured which represents the
level of salt in water. Scientists use these sensor measurements of electrical
conductivity to control the operation of a drinking water well.

Based on the aforesaid scenario, we construct an artificial and simpli-
fied workflow which is used to explain the mechanism of the multi-step
probabilistic provenance inference method. Figure 6.1 shows the simplified Workflow

descriptionworkflow. We assume that there are three sensors measuring electrical con-
ductivity in three different locations. These sensors send data tuples con-
taining the device id, the latitude and the longitude of the location, the
measured electrical conductivity, the timestamp of the measurement,
also referred to as valid time [79], along with some other attributes. Tuples
sent by these sensors are acquired by the source processing elements SP1,
SP2 and SP3 and then, are combined by a computing processing element
P4, which stores tuples in view V4 persistently, as shown in Figure 6.1.

1 Available at http://www.swiss-experiment.ch/index.php/Record:Home
2 Available at http://www.swiss-experiment.ch/
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Figure 6.1: The example workflow

Later, the tuples in the input view V4 are facilitated by a series of opera-
tions, represented by P5, P6 and P7 in Figure 6.1, to produce a chart that
shows the fluctuation of electrical conductivity over a time period. These
computing processing elements are connected along a path (a processing
chain) leading towards the generation of the persistent output view V7

which is facilitated to produce the fluctuation chat. In between the input
view V4 and the output view V7, there are a couple of non-persistent views,
V5 and V6, holding intermediate result sets. Scientists could request fine-
grained provenance for a particular output data product, shown in the
chart, which seems to have an unexpected value.

We consider the shaded part in Figure 6.1 to explain the working princi-
ple of the multi-step provenance inference method and to evaluate it. The
view V4 and V7 hold the input and output tuples, respectively and hence,
they are persistent views.

6.2 basic terminology

In this section, the definition of the terms which are used to explain the
multi-step probabilistic provenance inference method is given. First, we
restate the definitions of some basic terms which have already been intro-
duced in Section 4.3.

• Views: A view Vi can be defined as a set of tuples tji where j is
the transaction time [79]. The transaction time, j, refers to the system
timestamp indicating the point in time when the tuple is inserted
into the view Vi.
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6.2 basic terminology

• Computing Processing Elements: A computing processing element, Pk,
represents an operation that either computes a value/data product or
writes data products into a file, database etc. It takes views as input
and produces another view as output.

• Windows: A computing processing element, Pk, requires a window to
be defined over the input view for its successful execution in the con-
text of data streams. A window (Wi

n)k is a subset of tuples within a
view Vi at the nth execution of Pk. A window could be either tuple-
based or time-based. A tuple-based window can be defined based
on two parameters: i) window size m and ii) a point in time T . A
tuple-based window is a finite subset of Vi containing the latest m
number of tuples tji where j 6 T . The window size is represented as
WSi

k where,WSik = m (number of tuples). In a time-based window,
tuples whose timestamp falls into a specific boundary constitutes a
window. A time-based window (Wi

n)k = [start, end) is a finite sub-
set of Vi containing all tuples tji where start 6 j < end. In cases of
time-based windows, the window size WSik = end− start (amount
of time units).

• Trigger Interval: A trigger interval, TRk, refers to the predefined in-
terval between two successive executions of a computing processing
element, Pk. The trigger interval of a computing processing element
could be either tuple-based or time-based.

Like the probabilistic provenance inference method, the multi-step prob-
abilistic provenance inference method can infer fine-grained data prove-
nance under variable processing delay and variable sampling interval. To Distribu-

tionsaccomplish that, the multi-step probabilistic provenance inference method
takes a few distributions into account. Next, we introduce these distribu-
tions and notations to represent them which have already been described
in Section 5.2.

• Sampling Interval Distribution: The amount of time between two suc-
cessive tuples insertion into a view Vi is referred to as sampling in-
terval, λi. λi is a discrete random variable which has integer values,
defined over time domain. The distribution of λi is referred to as the
sampling interval distribution, denoted as P(λi).

• Processing Delay Distribution: The amount of time to complete the ex-
ecution of a processing element, Pk, after it is triggered, is referred
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to as processing delay δk. δk is a discrete random variable which has
integer values, defined over time domain. The distribution of δk is
referred to as the processing delay distribution, denoted as P(δk).

• First-tuple appearance Interval: It refers to the amount of time between
a particular window starts which is defined over the view Vi to exe-
cute Pk and arrival of the first tuple within that window. It is denoted
as αik and αik is a discrete random variable over time domain. The
distribution of the values of αik is denoted as P(αik).

• Last-tuple disappearance Interval: It refers to the amount of time be-
tween the arrival of the last tuple within a particular window which
is defined over the view Vi to execute Pk and the triggering point
of that window. it is denoted as βik and βik is a discrete random
variable over time domain. The distribution of the values of βik is
denoted as P(βik).

Unlike the probabilistic provenance inference method, the multi-step
probabilistic provenance inference method can infer fine-grained data prove-
nance for a processing chain (multiple processing steps) with the presence
of non-persistent, intermediate views. The multi-step probabilistic prove-Additional

terminol-
ogy

nance inference method infers a fine-grained data provenance graph with a
probability indicating how accurate the graph is. To accomplish this, the
multi-step probabilistic provenance inference method has to consider the
probability of a tuple’s existence at a particular point in time. Therefore, in
addition to the aforesaid terms, the following term is also used to explain
the multi-step probabilistic provenance inference method.

• Tuple Existence Probability: The probability of inserting a tuple, tji, in
the view Vi at time j is referred to as tuple existence probability and
it is denoted as P(tji). All tuples in a persistent view, Vp, have the
probability P(tjp) = 1while tuples in a non-persistent view Vnp have
probability P(tjnp) < 1.

The aforesaid terms are used to explain the working principle of the
multi-step probabilistic provenance inference method presented in this
chapter.
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6.3 overview of the multi-step probabilistic prove-
nance inference

The multi-step probabilistic provenance inference method can infer complete
fine-grained provenance information for a given processing chain with
non-persistent intermediate views. The method has three phases. Like the Documen-

tation of
workflow
provenance

other inference-based methods discussed in Chapter 4 and 5, first, the
workflow provenance information has to be documented which is a one-
time action and performed during the setup of the workflow. The next
phases are only executed if a user requests provenance information of a
particular output data product/tuple.

In the next phase, the proposed method facilitates the processing delay
distribution P(δk) of all processing elements Pk which are connected along Backward

computa-
tion

a path, i.e., a processing chain, producing the output view to calculate the
initial tuple boundary on the persistent input view. This phase is known as
the backward computation phase. The input data products/tuples fall within
the range of the initial tuple boundary might contribute to produce the cho-
sen output tuple.

In the last phase, for each processing element in the chain, original pro-
cessing windows are reconstructed, i.e., inferred windows, based on the
initial tuple boundary computed during the backward computation phase.
This phase is known as the forward computation phase. In this phase, the Forward

computa-
tion

proposed method also compute the probability of the existence of an in-
termediate output tuple at a particular timestamp by facilitating the ap-
propriate P(δk) distribution and other windowing constructs such as the
window size and the trigger interval etc. Afterward, The proposed method
associates the output tuple with the set of contributing input tuples gradu-
ally per processing element and this process is continued till we reach the
chosen tuple for which provenance information is requested. It provides
an inferred fine-grained data provenance graph for the chosen tuple.

The multi-step probabilistic provenance inference method can estimate the
overall accuracy at design time by facilitating the given distributions of
processing delay and sampling interval. To achieve this, we use a Markov Estimating

accuracychain model on the arrival of data tuples within a window to compute
specific distributions which is then used to estimate the accuracy of the
multi-step probabilistic provenance inference method. A Markov chain is
a mathematical system that represents the undergoing transitions from one
state to another in a chain-like manner [16].
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6.4 required information

The multi-step probabilistic provenance inference method requires a few
information and a set of assumptions to be satisfied by the underlying ex-
ecution environment like the other inference-based methods as discussed
in Chapter 4 and 5. Details on this required information and assumptions
have already been discussed in Section 4.5. In this section, we summarize
this required information and the set of assumptions.

First, it is required to attach the transaction time (system timestamp) to ev-
ery data products/tuples. Second, the multi-step probabilistic provenance
inference method requires the processing elements to process data prod-
ucts/tuples based on their order on transaction time in the input view, fol-
lowing temporal ordering of tuples during the processing. At last, like any
inference-based method, the multi-step probabilistic provenance inference
method also facilitates the documented workflow provenance of a scientific
model to infer fine-grained data provenance.

Furthermore, there are a few assumptions required to be fulfilled to
apply the proposed method. These assumptions, applicable for a comput-
ing processing element with multiple input views or producing multiple
output data products, have been discussed in Section 4.5.2. One of these
assumptions indicates that the inference mechanism must know the order
of input views which participate in an activity, realized by a computing
processing element. Another assumption mentions that the name of the
contributing input view shall be documented explicitly in cases the activity
to be performed has multiple input views. The other assumption also has
to be satisfied to ensure that the order of tuples in the output view follows the
same order found in input views. If these assumptions are not fulfilled by
the underlying system, the multi-step probabilistic provenance inference
method cannot be applied.

6.5 documentation of workflow provenance

The documentation of workflow provenance is the pre-requisite phase which
has to be completed before the actual execution of the inference-based
method. In this phase, the workflow provenance of the entire data pro-
cessing is explicated. The multi-step probabilistic provenance inference
method requires the same set of properties of a computing processing ele-
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ment to be documented as the probabilistic provenance inference method,
listed in Section 5.6. We provide a list of these properties below.

• Window type: refers to a list of window types; one element for each
input view. The value can be either tuple or time.

• Window size: refers to a list of window sizes; one element for each
input view. The value represents the size of the window.

• Trigger type: specifies how a computing processing element will be trig-
gered for execution; The value can be either tuple or time.

• Trigger interval: refers to the interval between successive executions
of the same computing processing element.

• Input-output ratio: refers to the ratio of the number of input data prod-
ucts contributed to produce output data products over the number of
output data products of a particular computing processing element.

• Number of input views: refers to the total number of input views.

• Identifier of input views: refers to the list of ids (node identifiers) of
input views.

• Contributing input views: refers to the fact that whether a computing
processing element with multiple input views processes data prod-
ucts over all input views or a specific input view at a time. For com-
puting processing elements with only one input view, it is set to not
applicable.

• Processing delay distribution: refers to the distribution of amount of
time required by a computing processing element to complete the
execution over the defined window.

Furthermore, the sampling interval distribution of the input view of the
workflow has to be documented also. It refers to the distribution of amount
of time between two successive tuples insertion into the view Vi, which is
an input view of a computing processing element Pk.

Figure 6.2 shows the artificial workflow described in Section 6.1 and its
explicated workflow provenance. In Figure 6.2, the workflow consists of Example

three computing processing elements such as P5, P6, P7, and four views
such as V4, V5, V6 and V7. Among the views, V4 is considered as the input
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 V4

VP Computing Processing Element View

Average

P5
 V5

  (Mandatory)

- ID = P5

- Name = Average

- Type = Aggregate

- hasOutput = false

- input-outputRatio = n:1

  (Optional)

- windowType = {time}

- windowSize = {5}

- triggerType = time

- triggerInterval = 5

- noOfInputViews = 1

- idOfInputViews = {V4} 
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- processingDelayDistribution 

= {0.665, 0.335}
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- ID = V4

- Name = input
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- IsPersistent = true

- IsIntermediate = false
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- samplingIntervalDistribution 
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- ID = V5
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- IsPersistent = false

- IsIntermediate = true

 V6
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Max-Min

P6
 V7

  (Mandatory)

- ID = P6

- Name = Max-Min

- Type = Aggregate

- hasOutput = false

- input-outputRatio = n:1

  (Optional)

- windowType = {time}

- windowSize = {8}

- triggerType = time

- triggerInterval = 8

- noOfInputViews = 1

- idOfInputViews = {V5} 

- contributingInputViews = n/a

- processingDelayDistribution 

 = {0.68, 0.32}

  (Mandatory)

- ID = P7

- Name = Difference

- Type = Aggregate

- hasOutput = true

- input-outputRatio = n:1

  (Optional)

- windowType = {time}

- windowSize = {11}

- triggerType = time

- triggerInterval = 11

- noOfInputViews = 1

- idOfInputViews = {V6} 

- contributingInputViews = n/a

- processingDelayDistribution 

 = {0.655, 0.345}

  (Mandatory)

- ID = V6

- Name = intermediate2

- Type = functor

- IsPersistent = false

- IsIntermediate = true

  (Mandatory)

- ID = V7

- Name = output

- Type = functor

- IsPersistent = true

- IsIntermediate = false

Figure 6.2: Example of the explicated workflow provenance

view and V7 is the output view and therefore, they are persistent views.
The other views, V5 and V6 are non-persistent, intermediate views. The
multi-step probabilistic provenance inference method facilitates the expli-
cated workflow provenance, shown in Figure 6.2 to infer fine-grained data
provenance as well as to estimate the accuracy of the inferred provenance.
Figure 6.2 shows the sampling interval distribution of the input view V4,
P(λ4) which is {0.37, 0.39, 0.24} for time unit 1, 2 and 3, respectively. It
means that 37% tuples arrive after 1 time unit from the previous tuple
arrival and so on. Furthermore, it also shows the given processing delay
distributions of involved computing processing elements along with other
parameters such window size, trigger interval etc. As an example, P(δ5)
has the values {0.665, 0.335} indicating that 66.5% times the processing de-
lay is 1 time unit and so on. The next two phases of the multi-step proba-
bilistic provenance inference method facilitates this documented workflow
provenance information as shown in Figure 6.2 to infer the fine-grained data
provenance graph.
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6.6 backward computation

6.6 backward computation of multi-step probabilis-
tic provenance inference

The backward computation phase will be only executed if the provenance
information is requested for a particular output tuple T produced by the
computing processing element P7 as shown in Figure 6.2. In the multi-step Initial

tuple
boundary

probabilistic provenance inference, the backward computation phase cal-
culates a tuple boundary with lower bound and upper bound over the input
view which possibly holds all input tuples which might have contributed
to produce the chosen output tuple T . This tuple boundary is referred to
as the initial tuple boundary. Since multiple processing steps are involved,
the initial tuple boundary on the input view might include input tuples from
several windows which were defined over the input view during the actual
execution. Therefore, the initial tuple boundary is not the same as the inferred
window in the probabilistic provenance inference method representing the
reconstructed original window, used for a single processing step.

The initial tuple boundary is calculated by facilitating the explicated work-
flow provenance as shown in Figure 6.2 and the transaction time of the tuple
T which is referred to as the reference point. Calculating both upper bound Calculating

upper
bound

and lower bound of the initial tuple boundary requires to consider the pro-
cessing delay distribution, P(δk) of all computing processing elements Pk,
which are connected along a path leading towards the persistent output
view in the given workflow. Therefore, in this case, P(δ5), P(δ6) and P(δ7)
are considered and thus, the value of k ranges from 5 to 7. Since the pro-
cessing delay of a particular computing processing element vary from one
window execution to another, we consider the minimum processing delay,
min(δk) of a computing processing element, Pk, extracted from the given
distribution P(δk), to calculate the upper bound of the initial tuple boundary.
The processing delay distributions of computing processing elements are
shown in Figure 6.2. The upper bound of the initial tuple boundary can be
calculated based on the following equation.

upperBound = referencePoint−

k=7∑
k=5

min(δk) (6.1)

where min(δk) refers to the minimum processing delay of a computing
processing element Pk ε {P5,P6,P7}
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The lower bound of the initial tuple boundary can be calculated by consid-
ering both processing delay and associated window size. In this case, weCalculating

lower
bound

consider the maximum processing delay, max(δk) of a computing process-
ing element, Pk, extracted from the given distribution dist(δk), to calcu-
late the lower bound of the initial tuple boundary. Moreover, the size of the
window, WSik defined over the input view Vi to execute the computing
processing element Pk has to be considered. The lower bound of the initial
tuple boundary can be calculated based on the following equation.

lowerBound = referencePoint−

k=7∑
k=5

max(δk) −

k=7∧i=6∑
k=5∧i=4

WSi
k (6.2)

where max(δk) refers to the maximum processing delay of a computing
processing element Pk ε {P5,P6,P7} and WSik refers to the window size
defined over view Vi ε {V4,V5,V6} to execute Pk ε {P5,P6,P7}, respectively.

Both upper bound and lower bound return a point in time and the tuples in
the input view V4 whose transaction time is less than the upper bound and is
greater than or equal to the lower bound will be included in the initial tuple
boundary.

Figure 6.3 shows a snapshot of all associated views based on the expli-
cated workflow provenance depicted in Figure 6.2. In Figure 6.3, the view
V4 is the input view and the view V7 is the output view. Therefore, these
views are persistent. The other two views, V5 and V6, hold intermediate
result set and therefore, they are non-persistent views. However, the tu-
ples in these intermediate views are shown in Figure 6.3 to calculate the
accuracy of the multi-step probabilistic provenance inference method later.
The directed edges in Figure 6.3 represent data dependency between input
tuples and the corresponding output tuple. For the simplicity, we assume
that all computing processing elements in Figure 6.3 start executing at the
same point in time which is 0. This is not an assumption that must be satis-
fied by the underlying execution environment. If a computing processing
element starts executing at a later point in time, the difference has to be
documented to apply the proposed method.

Scientists request the provenance for the tuple t467 shown in Figure 6.3.
Please note that we exclude the index referring to a view when represent-Example

ing a tuple in Figure 6.3 since the tuples are placed within a rectangle,
beneath each view. The tuple t467 is referred to as the chosen tuple, T. The
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 V4
Average

P5
 V5  V6

Difference

P7

Max-Min

P6
 V7
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t24
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t26
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t36

t34

t41

t46

t36

t39

t22

t42

t25

t35

t14

t42

t43

t17

- windowSize, WS4
5
 = 5

- triggerInterval, TR5 = 5

- min(δ5) = 1 - max(δ5) = 2

- dist(δ5) = {0.665, 0.335}

- windowSize, WS5
6
 = 8

- triggerInterval, TR6 = 8

- min(δ6) = 1 - max(δ6) = 2

- dist(δ6) = {0.68, 0.32}

- windowSize, WS6
7
 = 11

- triggerInterval, TR7 = 11

- min(δ7) = 1 - max(δ7) = 2

- dist(δ7) = {0.655, 0.345}

Triggering point Initial Tuple Boundarytj Tuple with transaction time j

Chosen 

Tuple, T

Figure 6.3: A snapshot of the views holding tuples

transaction time of the chosen tuple T is 46 and it is referred to as the ref-
erence point which is used to calculate the upper bound and lower bound of
the initial tuple boundary. Based on Equation 6.1 and 6.2 and the explicated
workflow provenance shown in Figure 6.2, the upper bound and the lower
bound of the initial tuple boundary is:

upperBound = referencePoint− [min(δ7) +min(δ6) +min(δ5)]

= 46− [1+ 1+ 1]

= 43

lowerBound = referencePoint− [max(δ7) +max(δ6) +max(δ5)]

− [WS6
7 +WS5

6 +WS4
5]

= 46− [2+ 2+ 2] − [11+ 8+ 5]

= 16

Therefore, the initial tuple boundary is [16, 43) defined over the input view
V4. The initial tuple boundary can be corrected based on the triggering
points of the computing processing element P5, which has the view V4
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as an input. The triggering points refer to the points in time when the com-Correcting
initial
tuple

boundary

puting processing element will be triggered according to the trigger interval
parameter. In this case, P5 has trigger interval of 5 time units and therefore,
it will be triggered on time 5, 10, 15 and so on. Both lower bound and upper
bound of the initial tuple boundary can be corrected based on these triggering
points. The corrected lower bound should start just after the highest trigger-
ing point which is less than the lower bound of the initial tuple boundary.
The corrected upper bound should not exceed the highest triggering point
which is less than the upper bound of the initial tuple boundary.

Since the lower bound of the initial tuple boundary is 16 and the highest
triggering point which is less than 16 is 15, the corrected lower bound is 15+
1 = 16. The corrected upper bound is 40 because it is the highest triggering
point which is less than the upper bound of the initial tuple boundary, 43.
Therefore, the corrected initial tuple boundary is [16, 40] where both lower
bound and upper bound are inclusive. The tuples falling in this range are
highlighted by using a shaded rectangle within the view V4 in Figure 6.3.

The corrected initial tuple boundary may contain some input tuples
which have not contributed to produce the chosen output tuple, T. These
tuples will be pruned during the next phase of the multi-step probabilistic
provenance inference.

6.7 forward computation of multi-step probabilis-
tic provenance inference

In this phase, the multi-step probabilistic provenance inference method infers
the fine-grained data provenance graph for the chosen tuple. This graph is alsoOverview

referred to as the inferred provenance graph. The forward computation phase
starts with the first processing step where the corresponding computing
processing element, Pk, has the persistent input view, Vi, as an input and
produces output tuples, contained possibly in an intermediate view, Vi+1.
Since intermediate views are non-persistent, the exact transaction time of
its tuples are not known. Therefore, the forward computation phase estab-
lish data dependencies between the input tuples within the window to the
prospective tuples in the intermediate view by facilitating the given process-
ing delay distribution P(δk) and the triggering points of Pk. The prospective
tuples refer to a set of tuples with different transaction time among which
only one of them could be produced based on the actual processing delay.
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Therefore, a prospective tuple always has a probability value that refers
to the probability of its existence. It is defined as the tuple existence proba-
bility in Section 6.2. This phase calculates the tuple existence probability for
tuples produced by all computing processing elements in the given pro-
cessing chain. The forward computation phase carries out this process till
it reaches the chosen tuple, T, for which the provenance information is
requested.

Depending on the order of a computing processing element, the mecha-
nism to calculate the tuple existence probability could differ. There are three Different

casescases to consider. First, a tuple is produced by the first computing pro-
cessing element in the chain, i.e., first processing step (P5 in Figure 6.2).
In this case, the particular computing processing element has persistent
input view but non-persistent output view. Second, a tuple is produced
by an intermediate computing processing element, i.e., intermediate step
(P6 in Figure 6.2), that has a non-persistent input view and non-persistent
output view. Please note that, this case occurs several times if a processing
chain has more than three processing steps and does not occur at all if a
processing chain has less than three processing steps. Third, a tuple is pro-
duced by the last computing processing element, i.e., last processing step
(P7 in Figure 6.2), which has a non-persistent input view but persistent out-
put view. Next, we explain each case and provide a formula to calculate
the tuple existence probability.

Figure 6.4 shows the prospective tuples along with its tuple existence proba-
bility for the first processing step where the computing processing element
P5 takes the persistent view V4 as an input and produces intermediate re-
sults, hold by the non-persistent view V5. Since V4 is a persistent view, all First step

tuples in V4 with transaction time j are assigned with probability, P(tj4) = 1.
Figure 6.4 shows that P5 has 5 different triggering points based on its
trigger interval, within the corrected initial tuple boundary, [16, 40]. These
triggering points are: at time 20, 25, 30, 35 and 40. Based on these trigger-
ing points, P5 produces output tuples, hold by the non-persistent view V5.
Therefore, the tuple existence probability of these output tuples has to be cal-
culated based on the processing delay distribution of P5, denoted as P(δ5).
For each triggering point at l of P5, the probability of getting a prospective
tuple at time k, where k > l, in V5 can be calculated using the following
formula based on the given workflow provenance , shown in Figure 6.2.
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 V4
Average

P5
 V5  V6
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P6
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(0.665)

(0.665)

(0.665)

(0.335)

(0.335)

(0.335)

(0.335)

(0.335)

Figure 6.4: Forward Computation for the first processing step

P(tk
5) = P(δ5 = k− l) (6.3)

As mentioned in Figure 6.2, P(δ5 = 1) = 0.665 and P(δ5 = 2) = 0.335.
Therefore, based on Equation 6.3 the tuple existence probability of an output
tuple at time 26 (=k) for the triggering at time 25 (=l) is:

P(t26
5) = P(δ5 = 26− 25)

= P(δ5 = 1) = 0.665

Using the same Equation 6.3, we can also calculate the the tuple existence
probability of an output tuple at time 27 (=k) for the same triggering point
at time 25 (=l).

P(t27
5) = P(δ5 = 27− 25)

= P(δ5 = 2) = 0.335

Figure 6.4 shows the data dependencies between the tuples in the in-Example

put view V4 and the prospective tuples in the intermediate view V5. For
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each triggering point of P5, two prospective tuples are grouped together in
view V5. It indicates that either one of these two tuples is produced from
the contributing input tuples in V4. The tuple existence probability values of
these tuples are also shown in Figure 6.4.

The forward computation phase now considers the next processing step.
This is an intermediate processing step where the computing processing Intermedi-

ate
step

element, P6, takes a non-persistent, intermediate view V5 as an input and
produces results in another non-persistent, intermediate view V6. The trig-
ger interval of P5 is 8 time units. The different triggering points of P6 within
the corrected initial tuple boundary [16, 40] are: at time 24, 32 and 40. These
triggering points are shown in Figure 6.4.

In an intermediate processing step, the tuples within a window defined
over the input view could be produced by more than one execution of
the previous computing processing element based on its triggering points.
As an example, P6 has a triggering point at 32 and the window contains
tuples within the range [24, 32) which were produced by the triggering
points at 25 and 30 of P5. The number of triggering points of the previous
processing step which are considered within a window of the current com-
puting processing element is referred to as the contributing points, denoted
as cp. In the aforesaid example, cp = 2. Moreover, the possible timestamps
to have a tuple due to a particular triggering point of the previous com-
puting processing element might fall into two different windows of the
current processing element. This results into different choice of paths to
infer the fine-grained data provenance graph. As an example, for the trig-
gering point at time 32 of P6, there exist two options: i) t315 is included
within the window [24, 32) defined over view V5 and ii) t325 is included
within the window [32, 40) defined over view V5. Figure 6.5 shows the
data dependencies between input and output tuples for both options. In
an intermediate step, the tuple existence probability at transaction time k
produced by a triggering point at time l of P6 is calculated by using the
following formula.

P(tk
6) =

cp∏
x=1

(
∑

P(prospective tuples))× P(δ6 = k− l) (6.4)

As depicted in Figure 6.2, P(δ6 = 1) = 0.68 and P(δ6 = 2) = 0.32.
For option i), where the tuple t315 is included within the window [24, 32)
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(a) Forward Computation for the intermediate processing step including t315
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(b) Forward Computation for the intermediate processing step excluding t315

Figure 6.5: Forward Computation for the intermediate processing step

186



6.7 forward computation

defined over V5, the tuple existence probability of an output tuple at time 33
and 34 due to the triggering of P6 at time 32 based on Equation 6.4 are:

P(t33
6) = [{P(t26

5) + P(t27
5)}× {P(t31

5)}]× P(δ6 = 33− 32)
= [(0.665+ 0.335)× 0.665]× P(δ6 = 1)
= 0.665× 0.68
= 0.452

P(t34
6) = [{P(t26

5) + P(t27
5)}× {P(t31

5)}]× P(δ6 = 34− 32)
= [(0.665+ 0.335)× 0.665]× P(δ6 = 2)
= 0.665× 0.32
= 0.213

According to option ii), the tuple t325 is included within the window
[32, 40) defined over V5 which means that there is no tuple produced at
time 31 in view V5. Therefore, only the tuple produced at either time 26 or
time 27 contributes to produce the output tuples t336 and t346. For option
ii), based on Equation 6.4, the tuple existence probability of an output tuple
at time 33 and 34 due to the triggering of P6 at time 32 are:

P(t33
6) = [{P(t26

5) + P(t27
5)}]× P(δ6 = 33− 32)

= [(0.665+ 0.335)]× P(δ6 = 1)
= 1.000× 0.68
= 0.68

P(t34
6) = [{P(t26

5) + P(t27
5)}]× P(δ6 = 34− 32)

= [(0.665+ 0.335)]× P(δ6 = 2)
= 1.000× 0.32
= 0.32

Figure 6.5a and 6.5b show the data dependencies among the tuples in
view V4, V5 and V6. Neither of views V5 and V6 are persistent. Therefore, Example

the tuples in view V5 and V6 are the prospective tuples and in most cases,
they are grouped together based on their triggering points, indicating that
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either one of these tuples exists. There are a few exceptions. Figure 6.5a
shows the case where we assume that t315 exists and it contributes to pro-
duce either one of the tuples t336 or t346. Figure 6.5b shows the opposite
case. In this case, t315 does not exist and hence, it does not contribute
to produce neither t336 nor t346. In fact, in this case, t325 exists and it
contributes to produce either one of the tuples t416 or t426. The data de-
pendencies in both figures are shown by using directed edges from input
to output tuples. The tuple existence probability values of these tuples are
also shown in Figure 6.5a and 6.5b.

The forward computation phase applies the same process for all inter-
mediate processing steps. At the last processing step, it will establish theLast step

data dependencies between the chosen tuple, T, and the contributing input
tuples. Based on the given workflow shown in Figure 6.2, the final pro-
cessing step involves the computing processing element P7 which takes
non-persistent, intermediate view V6 as an input and produces the output
tuples in a persistent view V7. The computing processing element P7 has
different triggering points at time 22, 33, 44 and so on based on its trigger
interval, as mentioned in Figure 6.2. Since it is the final processing step,
only the highest triggering point of P7 which is less than the transaction
time of T is considered. Since the transaction time of T is 46, we consider
the triggering point at time 44. Therefore, the tuples within the window
[33, 44) defined over the input view V6 participate to produce the chosen
tuple t467. The tuple existence probability of the chosen tuple can be calcu-
lated by a little modification of Equation 6.4. Since this output view V7 is
persistent, the existence of the chosen tuple at its transaction time is certain.
Therefore, the processing delay distribution, P(δ7), is not needed to con-
sider. The formula to calculate the tuple existence probability of the chosen
tuple, T, in the final processing step is given below.

P(T) =

cp∏
x=1

(
∑

P(prospective tuples)) (6.5)

We have to calculate the tuple existence probability of the chosen tuple,
T, for all aforementioned options. Therefore, for option i), where the tu-
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(a) Forward Computation for the last processing step including t315
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(b) Forward Computation for the last processing step excluding t315

Figure 6.6: Forward Computation for the last processing step
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ple t315 is included within the window [24, 32) defined over V5, the tuple
existence probability of the chosen tuple t467 is:

P(t46
7) = [{P(t33

3) + P(t34
3)}× {P(t41

3) + P(t42
3)}]

= [(0.452+ 0.213)× (0.665+ 0.335)]

= 0.665× 1.000
= 0.665

For option ii), where the tuple t315 does not exist and the tuple t325

is included within the window [32, 40) defined over V5, the tuple existence
probability of the chosen tuple t467 is:

P(t46
7) = [{P(t33

3) + P(t34
3)}× {P(t41

3) + P(t42
3)}]

= [(0.68+ 0.32)× (0.228+ 0.107)]

= 1.000× 0.335
= 0.335

Figure 6.6a and 6.6b show the data dependencies for the complete pro-
cessing chain, as shown in Figure 6.2. Figure 6.6a shows an inferred prove-Example

nance graph for the chosen tuple T with probability 0.665. Figure 6.6b shows
the other inferred provenance graph for the chosen tuple T with probability
0.335. As we have already mentioned, this probability value refers to the
probability of the accuracy of the inferred provenance graph. We choose the
inferred provenance graph with the highest probability value because of the
performance, maximizing the chance of accurately inferred provenance in-
formation. Therefore, the inferred provenance graph shown in Figure 6.6a is
selected as the output of this forward computation phase. Comparing it
with the snapshot shown in Figure 6.3, we can conclude that the inferred
provenance graph, depicted in Figure 6.6a, provides accurate provenance in-
formation for the aforesaid example.

6.8 accuracy estimation

The multi-step probabilistic provenance inference method can estimate the ac-
curacy of inferred fine-grained provenance information. Estimating the ac-
curacy depends on the failure conditions, discussed in Section 5.3 and the
given processing delay and sampling interval distributions as shown in Fig-
ure 6.2. By facilitating this information, the proposed method can estimate
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the optimal accuracy of each processing step. Please note that, currently,
we do not involve this accuracy estimation technique during the backward
computation and the forward computation phase of the proposed method,
inferring fine-grained data provenance graph. In the future, we would like
to extend the proposed method by integrating the accuracy estimation tech-
nique during the provenance inference phase.

As already mentioned, the accuracy of the multi-step probabilistic prove-
nance inference method is estimated based on two failure conditions, de-
fined in Chapter 5. Failure Condition 5.2 identifies that an inaccurate prove- Failure

conditionsnance inference can occur if the processing delay δk of a computing processing
element Pk is longer than the amount of time between the original window starts
and the arrival of the first tuple in the original window which is defined over
the view Vi, an input view to Pk. It indicates that if αik < δk holds, there
could be a failure by excluding a contributing input tuple. αik refers to the
first-tuple appearance interval, as defined in Section 6.2. Failure Condition
5.3 identifies that an inaccurate provenance inference can occur if a non-
contributing input tuple is inserted into the input view, Vi, before completing the
execution of a computing processing element, Pk, on the current window defined
over the input view, Vi. It indicates that if λi − βik < δk holds, there could
be a failure by including a non-contributing input tuple. βik refers to the
last-tuple disappearance interval, as defined in Section 6.2.

Furthermore, the multi-step probabilistic provenance inference method com- Required
distribu-
tions

putes specific distributions such as P(αik) and P(βik) based on a few given
distributions to estimate the accuracy. The method requires the processing
delay distribution, P(δk), of all computing processing elements, Pk, con-
nected along a path that produces final output. The sampling interval dis-
tribution, P(λi), of all associated views, Vi, except the output view of the
workflow are also required. While all processing delay distributions are
observed, only the sampling interval distribution of the input view is ob-
served to minimize the storage overhead incurred by observing sampling
interval distributions of other non-persistent views in the processing chain.
The sampling interval distributions of non-persistent, intermediate views
should be also computed.

The accuracy estimation process works in the following way. Assum- Overview

ing a processing step that involves a computing processing element Pk,
having an input view Vi and producing an output view Vi+1. We also as-
sume that the sampling interval distribution of the input view Vi, P(λi),
is given or already computed. First, the sampling interval distribution of
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the view Vi+1, P(λi+1), has to be computed unless Vi+1 contains the final
result and hence, a persistent view. Next, based on the P(λi) distribution
and the given P(δk) distribution, both P(αik) and P(βik) distribution are
computed. Later, the joint probability distribution between the given P(δk),
P(λi) and the computed P(αik) and P(βik) is calculated to estimate the op-
timal accuracy of the multi-step probabilistic provenance inference method for
that particular processing step. This process is repeated for all processing
steps. Please note that, the computed P(λi+1) distribution will be used in
the next processing step, involving Pk+1, to compute the corresponding
specific distributions such as P(αi+1k+1) and P(βi+1k+1).

In the following sections, we discuss the mechanism of computing the
aforesaid distributions to estimate the accuracy. Since the mechanism of
computing P(αik) and P(βik) distributions has been discussed in detail in
Section 5.7, we explain this mechanism briefly in this chapter. Applying
the aforesaid process, we also report the estimated accuracy of the given
processing chain as shown in Figure 6.2.

6.8.1 Computing P(λi+1) Distribution

As defined in Section 6.2, a sampling interval distribution, P(λi+1), of a
view Vi+1 refers to the probability distribution of the amount of time be-
tween two successive tuples insertion into the view Vi+1. As already men-
tioned, the sampling interval distribution of the input view of the workflow
is given. Therefore, Vi+1 refers to a non-persistent, intermediate view pro-
duced by a computing processing element Pk which takes a view Vi as an
input. The sampling interval of the view Vi+1 depends on the following
two parameters.

1. Processing delay δk: The amount of time required to process the tu-
ples within a window defined over the input view Vi by the com-
puting processing element Pk is referred to as the processing delay
of Pk, denoted as δk. After the processing, Pk produces a new tuple
in its output view Vi+1. Therefore, the processing delay of two suc-
cessive executions of Pk influences the sampling interval distribution
P(λi+1).

2. Trigger interval TRk: The amount of time between two successive ex-
ecutions of Pk is referred to as the trigger interval, denoted as TRk.
After each execution of Pk, a new tuple is inserted into its output
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view Vi. Therefore, TRk also has the influence over the sampling in-
terval distribution P(λi+1).

The sampling interval, λi+1, is the distance in time between two succes-
sive tuples in view Vi+1. We need to consider the trigger interval and the
processing delay of Pk in two successive executions to calculate λi+1. The
processing delay at the previous and current execution of Pk are denoted
as δkp and δk

c, respectively. Based on these parameters, the formula to
calculate the corresponding λi+1 is given below.

λi+1 = TRk − δk
p + δk

c (6.6)

The value of TRk is explicated in the workflow provenance. The values
of both δkp and δkc actually represent the different values of δk based on
the distribution P(δk). According to Equation 6.6, we can calculate possible
values of λi+1 by putting the given value of TRk and different values of δk
at respective places based on the given distribution P(δk).

It is also possible to compute the probability of all possible values of
λi+1, i.e., P(λi+1), by facilitating the given P(δk) distribution. The proba-
bility of λi+1 = z, P(λi = z), is the sum of the product of the probabilities
of processing delays δk resulting in a distance of z for a given trigger inter-
val TRk. The formula is given below.

P(λi+1 = z) =

max(δk)∑
x=1

P(δk = x)× P(δk = z− TRk + x) (6.7)

Equation 6.7 calculates P(λi+1), i.e., the probability of all possible λi+1
values, by facilitating P(δk) distribution and TRk. Table 6.1 shows different
λ5 values and their corresponding probability based on Equation 6.7 for
the workflow, shown in Figure 6.2.

Table 6.2 shows the comparison between the computed P(λ5) distribu-
tion based on Equation 6.7 and the corresponding observed distribution
which is collected during the execution of the computing processing ele-
ment P5. As it can be seen from Table 6.2, the computed P(λ5) distribution
is similar to the observed one which shows the soundness of the computa-
tion method.
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Table 6.1: Probability of different values in P(λ5) Distribution

δ5
p = x P(δ5

p = x) δ5
c = y P(δ5

c = y) TR5 λ5 = z P(λ5 = z)

1 0.665 1 0.665 5 5 0.442

1 0.665 2 0.335 5 6 0.223

2 0.335 1 0.665 5 4 0.223

2 0.335 2 0.335 5 5 0.112

Table 6.2: Observed vs. Computed P(λ5) Distribution

λ5 = z Observed Computed

P(λ5 = z) P(λ5 = z)

4 0.216 0.223

5 0.568 0.554

6 0.216 0.223

6.8.2 Computing P(αik) and P(βik) Distributions

The major phase of estimating the accuracy of the multi-step probabilis-
tic provenance inference method is to compute P(αik) and P(βik) distri-
butions. Computing these distributions follow the same approach as dis-
cussed in Section 5.7. Therefore, in this section, we discuss the computation
process briefly.

First, we compute P(αik) distribution which refers to the probability of
all possible values indicating the distance in time between start of a win-
dow defined over view Vi and the arrival of the first tuple within that
window. Computation of P(αik) distribution is accomplished by construct-
ing a tuple-state graph, Gα, by facilitating Markov chain model [16]. Each
vertex in Gα represents a state, which identifies the position of a tuple
within a window w.r.t. the start of the window, defined over the input
view Vi of the computing processing element Pk. There are two different
types of states in the tuple-state graph, Gα. These are:
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1. First states: These states represent that the current tuple is the first
tuple of a particular window. These are denoted as the arrival times-
tamp of the tuple in the window w.r.t the start of the window, fol-
lowed by a letter ’F’ (e.g. 0F, 1F, 2F). In this case, the arrival times-
tamps indicate the first-tuple appearance interval as discussed in Sec-
tion 6.2.

2. Intermediate states: These states represent the arrival of tuples within
a window without being the first tuple. The states are represented by
the arrival timestamp of the new tuple in the window w.r.t the start
of the window, followed by a letter ’I’ (e.g. 1I, 2I, 3I, 4I).

The tuple-state graph Gα has a set of vertices and directed edges, i.e.,
Gα = (Vα,Eα). First, a set of first and intermediate states are added as
vertices/nodes based on Equation 5.5. Next, directed edges are created be-
tween these vertices, indicating transitions from one state to another based
on the sampling interval of the input view Vi. These transitions are classi-
fied into two types: i) transitions within the window boundary (e.g. from
’0F’ to ’1I’, from ’1I’ to ’3I’ etc.), ii) transitions crossing the window bound-
ary (e.g. from ’4I’ to ’2F’). Furthermore, each directed edge, representing
a transition, has a weight value refers to the probability of this transition
based on P(λi) distribution. The formulas to create transitions both within
the window boundary and crossing the window boundary are given in
Equation 5.6 and 5.7, respectively.

The initial state probabilities are uniformly distributed when the tuple-
state graph Gα, is constructed based on the window size defined over the
input view of the given workflow, i.e., view V4 in Figure 6.2. However, the
initial state probabilities of the Markov model for the first states are not
uniformly distributed when the tuple-state graph is constructed based on
the window size defined over a non-persistent view Vnp, produced by a
computing processing element Pint1. In this case, the initial probability
of being in a first state ’xF’ can be 0 if there is no possibility of getting
a specific distance measured between the start of a window and the first
arrival of a tuple in the window. In particular, if the distance x can not be
constructed between the transaction time of a tuple in Vnp, i.e., the sum of
c1th triggering point of Pint1 and δint1, and the start of a window defined
over Vi for the c2th trigger of the next computing processing element,
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Pint2, in the chain, the probability of being in state ’xF’ becomes 0. The
formula of the distance x is given below.

x = (c1 × TRint1 + δint1) − (c2 × TRint2 −WSiint2)

The long-term behavior of a Markov chain enters a steady state, i.e.,
the probability of being in a state will not change with time [47]. In the
steady state, the vector sα represents the average probability of being in a
particular state based on the tuple-state graph Gα. To optimize the steady
state calculation, vertices with no incoming edges are discarded.

Following the aforesaid mechanism, we construct the tuple-state graphGα
by facilitating the P(λ4) distribution, the window size WS45 and the trig-
ger interval TR5, explicated in Figure 6.2. The resulting graph is the same
as the tuple-state graph shown in Figure 5.5 because of using the same set of
parameters. Based on Gα, we can calculate the corresponding steady-state
vector sα. To compute P(α45) distribution, we only consider the proba-
bilities of states with suffix ’F’ from the vector sα. The resulting P(α45)
distribution is same as it has been shown in Table 5.2.

Along the lines of computing P(α45) distribution discussed above, P(β45)
distribution indicating the probability distribution on the distance between
the last tuple in a window and the end of the window can be calculated.
In this case, a tuple-state graph Gβ has to be constructed which has the
following two states.

1. Intermediate states: These states represent the arrival of tuples within
a window without being the last tuple of that window. The states are
represented by the arrival timestamp of the new tuple in the window
w.r.t the start of the window, followed by a letter ’I’ (e.g. 0I, 1I, 2I, 3I,
4I).

2. Last states: These states represent that the current tuple is the last
tuple of a particular window. These are denoted as the arrival times-
tamp of the tuple in the window w.r.t the start of the window, fol-
lowed by a letter ’L’ (e.g. 2L, 3L, 4L). In this case, the arrival times-
tamps indicate the last-tuple disappearance interval as discussed in Sec-
tion 5.2.

Like Gα, Gβ has a set of vertices and directed edges, i.e., Gβ = (Vβ,Eβ).
The vertices are added based on Equation 5.8. Afterward, directed edges,
representing transitions between one vertex to another, are added. There
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could be three different sets of directed edges in Gβ. The first set includes
directed edges connecting two points (states) within the same window.
The second set includes directed edges representing that the current tuple
is the last tuple in the window. The third set includes directed edges rep-
resenting the transitions crossing the window boundary. The formulas to
add directed edges in Gβ is given in Equation 5.9, 5.10 and 5.11.

After constructing Gβ, we calculate the steady-state vector sβ. Next, we
only consider the probabilities of states with suffix ’L’ from the vector sβ
to compute the P(β45) distribution. The resulting distribution is same as it
has been shown in Table 5.3. The detailed mechanism of computing these
specific distributions has been discussed in Section 5.7.2.

6.8.3 Estimating Accuracy

After computing P(αik) and P(βik) distributions, the multi-step probabilis-
tic provenance inference method calculates a joint probability distribution
between the given P(λi), P(δk) and the computed P(αik) and P(βik) distri-
butions based on Failure Condition 5.2 and 5.3 indicating situations where
wrong provenance can be inferred. Failure Condition 5.2 indicates that a con-
tributing input tuple could be excluded if the following condition holds:
αi
k < δk. Failure Condition 5.3 indicates that a non-contributing input tuple

could be included if the following condition holds: λi −βik < δk.
Furthermore, the proposed method also facilitates an offset value while

estimating the accuracy. The offset value refers to the distance in time be-
tween the upper bound of a reconstructed window and the transaction time
of the output tuple produced due to that window execution. Therefore,
0 6 offset 6 max(δk), where max(δk) refers to the maximum value of
the random processing delay of Pk. For a given offset value, we can calcu-
late the estimated accuracy by using the joint probability distribution as
mentioned above. Therefore, we will choose a offset value such that the
resulting estimated accuracy would be the maximum one. The formula to
calculate the estimated accuracy is given in Equation 5.12.

According to Equation 5.12, setting the offset to 0, returns the estimated
accuracy of 30% by facilitating the given P(λ4), P(δ5) (see Figure 6.2) and
the computed P(α45) and P(β45) distributions. If we set the offset to 1, it
returns 84% estimated accuracy based on Equation 5.12. Therefore, we con-
clude that for the first processing step involving P5, the estimated accuracy
of the multi-step probabilistic provenance inference method is 84%.
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Following the same approach, the multi-step probabilistic provenance infer-
ence method can estimate the accuracy for other processing steps shown
in Figure 6.2. It estimates about 95% accuracy for the processing step in-
volving P6 while it provides an estimation of about 97% accuracy for the
processing step involving P7. Considering the complete processing chain,
the maximum achievable accuracy could be 84% since this is the minimum
estimated accuracy among all three step-by-step estimated accuracy.

6.9 evaluation

The multi-step probabilistic provenance inference method is evaluated based
on the workflow presented in Section 6.1. The shaded part in the Figure
6.1 is considered for this evaluation. In the given workflow, there are 3
computing processing elements, as shown in Figure 6.1. Each of these com-
puting processing elements takes a view as an input and produces another
view as an output. Since P5 is the first computing processing element in
the given processing chain, the input view of P5, V4 is the input view of the
given processing chain. P7 is the last computing processing element in the
given processing chain. Therefore, the output view of P7, V7 is the output
view of the given processing chain. As already mentioned in Section 6.1,
both input and output views of the given processing chain are persistent.
The collection of tuples in these views (V4 and V7) is referred to as sen-
sor data. The other two views contain intermediate results and hence are
non-persistent views. In this section, we describe the evaluation criteria,
methods, dataset, test cases and also report the evaluation results.

6.9.1 Evaluation Criteria and Methods

The multi-step probabilistic provenance inference method is evaluated based
on these criteria: i) storage consumption, ii) accuracy and iii) precision
and recall. The second research question (RQ 2) of this thesis is aboutCriteria

the challenge of managing fine-grained data provenance under different
system dynamics at reduced cost in terms of storage consumption as dis-
cussed in Section 1.4. The multi-step probabilistic provenance inference
method infers fine-grained data provenance at reduced storage cost un-
der variable processing delay and sampling interval for a given workflow.
Therefore, the multi-step probabilistic provenance inference method ad-
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dresses RQ 2 and provides a solution. Since the primary goal of RQ 2
is to have fine-grained data provenance at reduced storage costs, one of
the evaluation criterion is the storage consumption by provenance data. Fur-
thermore, the overall goal of the inference-based framework is to provide
accurate provenance information under variable system dynamics. There-
fore, another evaluation criterion is the accuracy of the inferred provenance
information. Unlike the other two methods discussed in Chapter 4 and 5,
the multi-step probabilistic provenance inference method provides an inferred
provenance graph, showing data dependencies between contributing input
tuples and the output tuple. Therefore, it is important to assess the quality
of an inferred provenance graph compared to the original one. To do so,
we calculate the precision and the recall of an inferred provenance graph.

As discussed in Section 4.7.1, we developed two implementations of
documenting fine-grained data provenance explicitly. These are: i) explicit Methods

provenance and ii) improved explicit provenance method. The explicit prove-
nance and the improved explicit provenance method maintain fine-grained
data provenance based on the schema diagram shown in Figure 4.6 and
4.7, respectively. Since there are multiple computing processing elements
in the given workflow, shown by the shaded part in Figure 6.1, there might
be several relations maintaining provenance data for all processing steps.
The storage cost of these relations maintaining provenance data is consid-
ered as the storage consumption of the explicit provenance and the improved
explicit provenance method. The storage consumption of the multi-step prob-
abilistic provenance inference method to maintain provenance data is com-
pared with the explicit provenance, the improved explicit provenance, the basic
provenance inference and the probabilistic provenance inference method. It may
be noted here that both basic provenance inference and probabilistic provenance
inference method require to store the transaction time of all tuples in each
view including the non-persistent ones to infer fine-grained data prove-
nance. Therefore, these two methods have the same storage consumption
as reported in Section 5.9. The multi-step probabilistic provenance inference
method requires to store the transaction time of all tuples in sensor data,
i.e., tuples in input and output view only, to infer fine-grained data prove-
nance.

The multi-step probabilistic provenance inference method is also evaluated
in terms of accuracy. The accuracy of an inferred provenance graph is mea-
sured by facilitating the traditional fine-grained provenance information,
also known as explicit provenance, as a ground truth. Furthermore, the pre-
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cision and the recall of an inferred provenance graph is also measured by
comparing it to the original provenance graph based on the ground truth.

6.9.2 Dataset

A real dataset3 measuring electrical conductivity of the water, collected
by the RECORD project, discussed in Section 5.1, is used to evaluate the
performance of different methods. The experiments are performed on a
underlying PostgreSQL 8.44 database and the Sensor Data Web5 platform.
The input dataset contains 30000 tuples representing the six-month period
from July-December 2009 and requires 7200 KB of storage space.

Besides this real dataset, a simulation using artificial data with variable
processing delay and sampling interval is also performed to evaluate the
accuracy of the multi-step probabilistic provenance inference method. Since this
method method can also estimate the accuracy beforehand, the estimated
accuracy calculated is also reported in results.

6.9.3 Test cases

The evaluation of the multi-step probabilistic provenance inference method
is performed based on two sets of test cases. The first set of test cases
uses a real dataset, containing 30000 tuples, as discussed in Section 6.9.2.
These test cases are used to compare different methods in terms of storage
consumption and accuracy. All these test cases are based on the sliding
windows. One of these test cases has non-overlapping sliding windows
(S1.Time.1) while the other has overlapping sliding windows (S1.Time.2).

The second set of test cases is introduced to compare the accuracy of the
inferred provenance information. These test cases are used in a simulation
using artificial data. Therefore, these are not used to evaluate the storage
consumption. The simulation is performed for 10000 time units.

Table 6.3 and 6.4 show the window size, trigger interval, processing de-
lay of each computing processing element in the given workflow as shown
by the shaded part in Figure 6.1 for every test case in both sets. Moreover,
P(λ4), the sampling interval of the input view V4, is also given for every

3 Available at http://data.permasense.ch/topology.html#topology
4 Available at http://www.postgresql.org/
5 Available at http://sourceforge.net/projects/sensordataweb/
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Table 6.3: Test Case Set I : Parameters of Different Test Cases used for the Evalua-
tion using Real Dataset

Test Processing Window Trigger mean/max mean/max

case Element size interval (δk) (λ4)

id Pk in time in time in time in time

units units units units

S1.Time.1
P5 5 5 1/2

2/3P6 8 8 1/2

P7 11 11 1/2

S1.Time.2
P5 5 2 1/2

2/3P6 8 2 1/2

P7 11 2 1/2

test case. For these two test cases shown in Table 6.3 and 6.4, we assume
that given sampling interval distribution, P(λ4), and all processing delay
distributions- P(δ5), P(δ6), P(δ7), follow Poisson distribution. The mean
value and max value of these distributions are also reported in Table 6.3
and 6.4.

The 4 test cases shown in Table 6.4 are chosen in such a way that each of
them has some variety in their parameters compared to the others. The dif-
ference between test case S2.Time.1 and test case S2.Time.2 is that they have
different values for mean and maximum processing delay for all computing
processing elements. Apparently, test case S2.Time.1 has smaller processing
delays than test case S2.Time.2. Test case S2.Time.3 and S2.Time.4 are almost
similar to each other except the parameters of sampling interval of the in-
put view V4, λ4. In test case S2.Time.3, mean(λ4) and max(λ4) are 2 and
3 time units, respectively where as in test case S2.Time.4, mean(λ4) and
max(λ4) are 3 and 5 time units, respectively. Therefore, the input tuples
arrive faster in test case S2.Time.3 than test case S2.Time.4.
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Table 6.4: Test Case Set II : Parameters of Different Test Cases used for the Evalu-
ation using Simulation

Test Processing Window Trigger mean/max mean/max

case Element size interval (δk) (λ4)

id Pk in time in time in time in time

units units units units

S2.Time.1
P5 6 6 1/2

2/3P6 10 10 1/2

P7 14 14 1/2

S2.Time.2
P5 6 6 2/3

2/3P6 10 10 2/3

P7 14 14 2/3

S2.Time.3
P5 7 5 1/2

2/3P6 13 11 1/2

P7 23 17 1/2

S2.Time.4
P5 7 5 1/2

3/5P6 13 11 1/2

P7 23 17 1/2

6.9.4 Storage Consumption

The storage consumption by different methods to maintain fine-grained
data provenance is one of the major evaluation criteria. We compare the
storage consumption among explicit provenance, improved explicit provenance,
basic provenance inference, probabilistic provenance inference and multi-step prob-
abilistic provenance inference method by facilitating the test case set I, de-
scribed in Table 6.3. In the result, the storage taken by the sensor data, col-
lection of both input and output data products, is also reported for all test
cases.

Figure 6.7 shows the storage consumption by different methods for test
cases in test case set I, shown in Table 6.3. Test case S1.Time.1 has non-
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overlapping, time-based window for all computing processing elements-
P5, P6 and P7. Please note that, all computing processing elements partici- Non-

overlapping
windows

pating in the workflow, have input-output ratio = n : 1 (‘many to one’), i.e.,
a computing processing element takes n tuples in the window as input
and produces 1 tuple as an output. View V4 is the input view of the work-
flow which is processed by P5 and it produces around 12000 tuples. View
V5 holds these tuples and these are processed further by P6. P6 produces
around 7500 tuples which are held by view V6. Eventually, P7 process
these tuples and produces around 5500 output tuples, which are inserted
into view V7. All these computing processing elements start executing at
the same time.

The explicit provenance method documents fine-grained data provenance
for every tuples produced by computing processing elements. In the non-
overlapping case, this method has to store 30000+ 12000+ 7500 = 49500

tuples maintaining provenance data. It takes around 3000 KB of storage
space. The improved explicit provenance method takes a little more space
than the explicit provenance method which is around 3200 KB of storage
space. In non-overlapping case, a particular input tuple does not contribute
several times. Therefore, improved explicit provenance method cannot com-
press the storage required by provenance data. Both basic provenance infer-
ence and probabilistic provenance inference method have to keep the transaction
time of all tuples in the input, intermediate and output views. The total
number of tuples are 30000+ 12000+ 7500+ 5500 = 55000. Both methods
take around 1100 KB of storage. Multi-step probabilistic provenance inference
method has to only keep the transaction time of tuples only in input and out-
put views. The number of input and output tuples is 30000+ 5500 = 35500.
It takes around 700 KB of storage space. In the non-overlapping case, the
multi-step probabilistic provenance inference method consumes around 23%,
22% and 63% of the storage space required by the explicit provenance, the
improved explicit provenance and the other inference-based methods to main-
tain provenance information, respectively.

The other test case, S1.Time.2, shown in Table 6.3, has overlapping, time-
based windows for all computing processing elements- P5, P6 and P7. The Overlap-

ping
windows

input-output ratio of all computing processing elements is = n : 1. View
V4 is the input view of the workflow which is processed by P5. Since the
average sampling interval of V4 is 2 time units and trigger interval of P5 is
also 2 time units, it can be said that upon the insertion of every tuple in V4,
P5 is executed. Therefore, P5 produces around 30000÷ 1 = 30000 tuples.
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Figure 6.7: Comparison of Storage Consumption among different methods using
test case set I

View V5 holds these tuples and these are processed further by P6. P6 also
produces around 30000 tuples which are held by view V6. Eventually, P7
process these tuples and because of the trigger interval of 2 time units, it
also produces around 30000 output tuples, which are inserted into view
V7.

In the test case S1.Time.2, the explicit provenance method has to store
around 360000 tuples maintaining provenance data. It takes more than
21000 KB of storage space. The improved explicit provenance method takes
less space than the explicit provenance method which is around 15000 KB
of storage space. In the overlapping case, a particular input tuple con-
tributes several times to produce output tuples. Therefore, the improved
explicit provenance method can compress the storage required by prove-
nance data. Both basic provenance inference and probabilistic provenance infer-
ence method have to keep the transaction time of all tuples in input, inter-
mediate and output views. The total number of tuples is around 120000.
Both methods take around 2400 KB of storage space. Multi-step probabilis-
tic provenance inference method has to only keep the transaction time of
only input and output tuples. The number of input and output tuples
is around 30000+ 30000 = 60000 tuples which requires around 1200 KB
of storage space. In this test case, the multi-step probabilistic provenance in-
ference method consumes around 6%, 8% and 50% of the storage space

204



6.9 evaluation

required by the explicit provenance, the improved explicit provenance and the
other inference-based methods to maintain provenance information, re-
spectively.

Please note that the reported ratio depends on the window size, trigger
specification and other parameters as shown in Table 6.3. If the window
size is larger and there is a big overlap between subsequent windows, the
multi-step probabilistic provenance inference method performs even better.

6.9.5 Accuracy

The accuracy of the multi-step probabilistic provenance inference method is
measured by comparing an inferred provenance graph with the original prove-
nance graph constructed from explicitly documented provenance informa-
tion. For a particular output tuple, if these two graphs match exactly with
each other then the accuracy of the inferred provenance information for
that output tuple is 1 otherwise, it is 0. We calculate the average of the
accuracy for all output tuples produced by a given test case, known as av-
erage accuracy. If there are n number of output tuples for a given test case
and accuracyi represents the accuracy (either 0 or 1) of ith output tuple
then average accuracy is expressed as:

Average accuracy = (

∑n
i=1 accuracyi

n
× 100)%

We facilitate both test case set I and II to evaluate the average accuracy
of the multi-step probabilistic provenance inference method. Furthermore, we
also report the estimated accuracy of multi-step probabilistic provenance infer-
ence method. The estimated accuracy is measured based on the mechanism
discussed in Section 6.8. Table 6.5 shows estimated and average accuracy
for each test case. Moreover, Table 6.5 also shows the achieved accuracy of
the probabilistic provenance inference and the basic provenance inference. In all
test cases, the multi-step probabilistic provenance inference method pro-
vides the same level of accuracy as the probabilistic provenance inference
method at lower storage costs. Next, we discuss some of the observations
based on the result presented in Table 6.5.

Test case S1.Time.1 and S1.Time.2 have the same parameters except the
trigger interval of computing processing elements. The multi-step proba-
bilistic provenance inference method achieves 83% and 84% accuracy for
test case S1.Time.1 and S1.Time.2, respectively. Next, we compare test case
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Table 6.5: Comparison of Accuracy between Different Inference-based Methods

Multi-step Probabilistic Probabilistic Basic

Test case id (Estimated) (Average)

S1.Time.1 84% 83% 83% 38%

S1.Time.2 86% 84% 84% 36%

S2.Time.1 83% 84% 84% 39%

S2.Time.2 61% 65% 67% 28%

S2.Time.3 86% 84% 84% 41%

S2.Time.4 92% 93% 93% 61%

S1.Time.1 and S2.Time.1. Both test cases have non-overlapping windows of
different size. Though window size defined over views for different com-
puting processing elements do not match with each other, the level of ac-
curacy of inferred provenance is almost similar in these two test cases. The
multi-step probabilistic provenance inference method achieves 83% and
84% accuracy for test case S1.Time.1 and S2.Time.1, respectively. From theseInfluence:

window
size and
trigger

interval

comparisons, it seems that both trigger interval and window size have al-
most no influence over the accuracy. However, experiments with the same
window size and trigger interval for all computing processing elements
show that the multi-step probabilistic provenance inference achieves 100%
accuracy irrespective of other parameters such as the processing delay and
the sampling interval. It also happens when the window size and the trig-
ger interval of all computing processing elements has a common factor
between them. Since the triggering points of different processing elements
will be aligned with each other in these cases, there is a very low chance to
have different provenance graph for a selected output tuple and this could
increase the level of accuracy.

Based on Table 6.5, the multi-step probabilistic provenance inference
method achieves only 65% accuracy for test case S2.Time.2. This test caseProcessing

delay has the same parameters like test case S2.Time.1 except the processing de-
lay of participating computing processing elements. Computing process-
ing elements in test case S2.Time.2 take more time to process input tu-
ples than test case S2.Time.1. The multi-step probabilistic provenance infer-
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ence method achieves 65% and 84% accuracy for test case S2.Time.2 and
S2.Time.1, respectively. According to Failure Condition 5.2 and 5.3, the pro-
cessing delay takes a part determining whether wrong provenance can be
inferred or not and if it increases the chance of inaccuracy also increases.
Therefore, it seems reasonable to conclude that the higher the processing de-
lay, the lower the chance of achieving accurately inferred provenance.

At last, we compare the accuracy of multi-step probabilistic provenance
inference method between test case S2.Time.3 and S2.Time.4. These two test Sampling

intervalcases have exactly the same parameters except the sampling interval of
the input view V4. In test case S2.Time.3, input tuples are inserted more
frequently than in test case S2.Time.4. Table 6.5 shows that the accuracy of
the method increased by almost 10% in test case S2.Time.4, compared to
the accuracy achieved in test case S2.Time.3. In Failure Condition 5.2 and 5.3,
we can also see that value of λi takes a part to decide whether the infer-
ence would provide accurate or inaccurate provenance. Based on Failure
Condition 5.2 and 5.3, keeping δk values the same and increasing λi values
would definitely decrease the chance of a failure. Therefore, this analysis
might give a useful indication that the higher the sampling time, the higher the
chance of achieving accurately inferred provenance.

Furthermore, we can make another observation from the result reported
in Table 6.5. The estimated accuracy of the multi-step probabilistic prove-
nance inference method is almost similar to the achieved average accuracy
of the method. Since the estimated accuracy can be calculated before the
actual experiment, it is a useful indicator for the applicability of multi-step
probabilistic provenance inference method for a given test case.

6.9.6 Precision and Recall

The multi-step probabilistic provenance inference method infers a fine-grained
data provenance graph. If one of the edges in the inferred provenance
graph does not match with the original provenance graph, the accuracy of
that particular inferred provenance graph becomes 0. Therefore, we intro-
duce precision and recall of the inferred provenance graph to have a finer
criterion than the accuracy.

Precision and recall are widely chosen measures for evaluating the per-
formance of information retrieval systems [9]. Precision is the fraction of
the retrieved documents that are relevant to the user’s information need.
Recall is the fraction of the documents relevant to a query that are success-
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Figure 6.8: Example of Inferred Provenance Graphs with precision and recall

values

fully retrieved. Both precision and recall are used to quantify the quality
of the result of a query.

We adopt the aforesaid definition of precision and recall to assess the
quality of an inferred provenance graph, comparing it to the corresponding
original provenance graph. In this case, we consider the edges between ver-
tices which represent data dependences between two tuples. Assume that,
I be the set of edges in an inferred provenance graph and O be the set of
edges in the corresponding original provenance graph. Precision and recall
can be calculated using the following formula.

precision = (
|I∩O|
|I|

× 100)% recall = (
|I∩O|
|O|

× 100)%
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Table 6.6: Average Precision and Average Recall of Multi-step Probabilistic Prove-
nance Inference

Test case id Average Precision Average Recall

S1.Time.1 87% 98%

S1.Time.2 85% 97%

S2.Time.1 88% 96%

S2.Time.2 86% 93%

S2.Time.3 90% 97%

S2.Time.4 93% 96%

Figure 6.8 shows examples of inferred provenance graph with precision and
recall values and the corresponding original provenance graph. Figure 6.8a Example

depicts the original provenance graph for an output tuple t46 in view V7.
The original provenance graph is drawn based on the documented explicit
fine-grained data provenance. Each edge in the original provenance graph
is labeled such as E1, E2 etc. No two edges can have the same label unless
their start and end vertex are the same. In the original provenance graph,
there are 11 edges. Therefore, |O| = 11. Figure 6.8b shows an example
of an inferred provenance graph for the same output tuple t46 in view V7.
Since view V5 and V6 in the given workflow are non-persistent views, the
multi-step probabilistic provenance inference method can infer only a set of
possible transaction times for a tuple in a non-persistent view based on the
appropriate processing delay distribution. As an example, in view V5, a
tuple could exist either at time 26 or at time 27. Therefore, there would
be two versions of the corresponding edge E1. When comparing it with
the original provenance graph, we keep the edge which exactly matches
with that in the original provenance graph and remove the other edge.
The edge is labeled with the same value which is found in the original
provenance graph. After finding appropriate versions of edges, we get the
inferred provenance graph shown in Figure 6.8b. In this case, |I| = 11 and
|I ∩O| = 11. Therefore, this inferred provenance graph has precision =

100% and recall = 100%. It is the accurate inferred provenance graph for
the selected output tuple.

209



multi-step probabilistic provenance inference

Figure 6.8c shows another example of an inferred provenance graph for
the same output tuple t46 in view V7. This inferred provenance graph does
not have a few edges compared to the original provenance graph. However,
existing edges in this graph match exactly with corresponding edges in
the original provenance graph, shown in Figure 6.8a. It has precision =

100% and recall = 64%. The last example of an inferred provenance graph
shown in Figure 6.8d has precision = 73% and recall = 73%. The dotted
edges in this graph, shown in Figure 6.8d, are incorrect ones based on the
original provenance graph.

In the light of the aforesaid example, we calculate precision and recall
for each output tuple and then compute the average precision and average
recall per test case. Table 6.6 shows average precision and average recall
for different test cases. In all test cases, average recall is higher than average
precision. It means that the inferred provenance graph may contain some
extra edges which are not present in the original one. However, values
of both precision and recall in all test cases suggest that the quality of an
inferred provenance graph is high and it could be very useful to scientists.

6.10 discussion

Like the other inference-based methods discussed in Chapter 4 and 5, the
multi-step probabilistic provenance inference method has the same set of
requirements to be satisfied, discussed briefly in Section 6.4. If these re-
quirements are not fulfilled by the underlying system, the multi-step prob-
abilistic provenance inference method cannot be applied. Moreover, to ad-
dress activities with variable input-output ratio, the proposed method fol-
lows the same approach taken by the other inference-based methods as
discussed in Section 4.8.

The multi-step probabilistic provenance inference method is capable ofLong
processing

chain
inferring fine-grained data provenance for a given processing chain with
several processing steps. In case of a long processing chain with tens or
hundreds of steps, the proposed method might perform poorly in terms of
accuracy. In this case, the method has to handle the higher magnitude of
dynamism introduced in the system by having many processing steps and
variable processing delays for each of these steps. Furthermore, a long pro-
cessing chain requires more information to be explicated in the workflow
provenance. In this case, aggregating different steps into a single process-
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ing step could minimize the storage costs as well as maximize the accuracy.
Therefore, it is recommended to apply the multi-step probabilistic prove-
nance inference method on a reasonably smaller processing chain.

The multi-step probabilistic provenance inference method has been ex-
plained based on a processing chain where associated views have time-
based windows only. It is possible to extend the proposed method for Tuple-based

windowstuple-based windows too. In this case, the key element of the inference
mechanism is the sequence number of the tuples in views rather the times-
tamps of tuples in case of time-based windows. Since sequence number
of the tuples are local to each view, not a global variable like timestamps,
the inference mechanism has to also transform the local sequence number
into a global one before applying the method. As an example, we assume
that a computing processing element Pk has the input view Vi and it pro-
duces the output view Vi+1. The input-output ratio of Pk is n : 1 where
n be the window size defined over Vi. A tuple produced by Pk has the
sequence number s in view Vi+1. This local sequence number s could be
transformed into a global sequence number S based on the following for-
mula: S = (s× TRk) + (WSi

k − TRk) + 1. In this case, we assume that Pk
starts executing once there areWSik tuples in view Vi and the window is a
non-jumping window. Using the principle of backward computation phase,
discussed in Section 6.6, it could be possible to estimate global sequence
number of tuples in all views including the intermediate ones. However,
a combination of tuple-based and time-based windows in a processing
chain could be more tricky to address. In future, we would like to extend
the multi-step probabilistic provenance inference method in this direction.

Finally, we would like to integrate the accuracy estimation mechanism
of the multi-step probabilistic provenance inference method into the actual
inference mechanism to achieve more accurate provenance information.

6.11 summary

The multi-step probabilistic provenance inference method that can infer
fine-grained data provenance at reduced storage costs for a given work-
flow with multiple processing steps and non-persistent intermediate views.
The design and development of this method was motivated by the second
research question (RQ 2) which mentioned the challenge of managing fine-
grained data provenance at reduced storage consumption under different
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system dynamics. The proposed method is an extension of the probabilistic
provenance inference method, discussed in Chapter 5, to handle multiple
processing steps in a workflow with non-persistent, intermediate views.

Like the other inference-based methods discussed in Chapter 4 and 5,
the multi-step probabilistic provenance inference method has three phases.
First, the workflow provenance is documented. The next two phases are
executed only once the user requests provenance for an output data prod-
uct. In the second phase, the method calculates an initial tuple boundary,
defined over the input view of the workflow, which includes potential in-
put tuples those might have contributed to produce the selected output
data product/tuple. During this phase, the method exploits the values of
different properties of the particular computing processing element such
as window size, processing delay distribution to construct the initial tu-
ple boundary. Finally, the proposed method establishes data dependencies
between input and output tuples per processing step till it reaches the se-
lected output tuple. The outcome of the final phase is a fine-grained data
provenance graph.

The proposed method can also estimate the accuracy of inferred prove-
nance information by facilitating a few given distributions on processing
delay and sampling interval. At the time of estimating the accuracy, it in-
volves Markov chain model to compute several specific distributions which
are necessary to estimate the level of accuracy.

We evaluated storage consumption and accuracy of the multi-step proba-
bilistic provenance inference method for different test cases. The evaluation
shows that the multi-step probabilistic provenance inference method takes
less space compared to the explicit provenance collection methods and
the other inference-based methods, discussed in Chapter 4 and 5. If the
window size and the overlaps between windows is larger, the proposed
method performs even better. Furthermore, the method achieves almost
similar level of accuracy as the probabilistic provenance inference method
(Chapter 5). Therefore, applying the multi-step probabilistic provenance in-
ference method, we can achieve similar accuracy at even reduced storage
costs. To quantify the quality of inferred provenance, we also calculated
precision and recall of inferred provenance graphs. The average precision
and average recall achieved by this method shows us that the inferred
provenance graph resembles the original provenance graph very well and
hence, the inferred provenance graph could be useful to scientists to trace
an unexpected value back to its source.
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7
S E L F - A D A P TA B L E F R A M E W O R K

The inference-based framework, discussed in this thesis, should be ca-
pable of handling different situations. A particular situation can be often
defined as a set of values of related parameters such as processing delay,
sampling interval etc. in this particular setting. Depending on values of
the aforesaid parameters, situations can change quickly and the inference-
based framework has to accommodate these changes to infer accurate
provenance at a comparatively lower storage costs.

We presented different components of the framework that can infer data
provenance at reduced costs in terms of storage consumption and time. In
Chapter 3, we described the workflow provenance inference method which
can infer workflow provenance, i.e., data dependencies between opera-
tions/activities, from the source code of a given scientific model. Infer-
ence of workflow provenance allows scientists to capture workflow prove-
nance of their scientific model automatically which in turn saves signifi-
cant amount of time. Later, the workflow provenance of a scientific model
is facilitated by inference-based methods which can infer fine-grained data
provenance. These inference-based methods were described in Chapter 4, 5

and 6. As explained in Chapter 4, the basic provenance inference method can
infer accurate fine-grained data provenance for offline (non-stream) data.
It also infers accurate provenance for data streams if the amount of time re-
quired to process input data products/tuples, also referred to as processing
delay, is always constant. However, processing delay could vary depending
on the system workload as well as types of operations/activities. In Chap-

This chapter is based on part of the work: An Inference-based Framework to Manage Data
Provenance in Geoscience Applications. Accepted in IEEE Transactions on Geoscience and
Remote Sensing, IEEE Geoscience and Remote Sensing Society, 2013. (Impact Factor: 2.895)
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ter 5, we presented the probabilistic provenance inference method which infers
fine-grained data provenance under variable system dynamics such as pro-
cessing delay and tuple arrival pattern, also referred to as sampling inter-
val. It facilitates appropriate processing delay and sampling interval distri-
butions to infer optimally accurate fine-grained data provenance. However,
this method is suitable for a processing step with persistent input. The
multi-step probabilistic provenance inference method extends the previous ap-
proach and can infer fine-grained data provenance for an entire workflow,
consisting of several processing steps with non-persistent, intermediate re-
sults under variable system dynamics, as discussed in Chapter 6.

We have developed these inference-based methods to handle different
situations, i.e., offline data/data streams and constant/variable system dy-
namics. However, the framework cannot decide autonomously to chooseChallenge

the appropriate inference-based method based on the characteristics of a
given scientific model and the underlying execution environment. This
challenge is identified and mentioned in the third research question (RQ
3) of this thesis, as discussed in Section 1.4. This research question focuses
on how to incorporate the self-adaptability into the provenance inference
framework, discussed in this thesis.

Since there could be variations in the underlying system dynamics and
model characteristics, self-adaptability of the framework becomes a major
concern. Self-adaptability allows the proposed inference-based frameworkSelf-

adaptable
framework

to select the most appropriate inference-based method based on some key
characteristics. Furthermore, a self-adaptable framework is also capable of
monitoring the execution environment continuously so that changes in any
key characteristic can be accommodated promptly. A framework inferring
data provenance without self-adaptability cannot address any changes in
system dynamics such as processing delay, sampling interval etc. and in
turn, it could infer inaccurate provenance information. The self-adaptable
framework can infer highly accurate provenance information with minimal
guidance and intervention from developers side.

In this chapter, we describe the key characteristics of a scientific model
which needs to be considered to incorporate self-adaptability into the frame-
work. Based on these key characteristics, we present a decision tree which
is facilitated to take the decision of the most appropriate inference-based
method based on current system dynamics and model characteristics.

The structure of this chapter is as follows. First, we discuss the keyChapter
Structure characteristics of a scientific model which are considered to achieve a self-
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adaptable system. Next, we describe and explain the decision making pro-
cess to select the most suited inference-based method. Finally, we discuss
the potential of assessing applicability of inference-based methods in terms
of storage costs and accuracy during a decision making process.

7.1 key characteristics of a scientific model

In Section 1.3, we discussed the characteristics of different entities associ-
ated with a scientific model at both design and execution phase. Some of
these characteristics are considered and explored to achieve a self-adaptable,
inference-based provenance management framework. In this section, we
describe these key characteristics briefly and also point out the reasons
which make them important. The key characteristics are given in the fol-
lowing.

• Model developing platform: A scientific model could be developed ei-
ther in a platform which collects provenance automatically or in a
platform that has no provenance support. The former is referred to as
provenance-aware platform, while the later is referred to as provenance-
unaware platform. Workflow engines such as Kepler [84], Karma2

[116], Taverna [102], VisTrails [24] are examples of provenance-aware
platforms. General purpose programming languages like Python1,
general purpose data manipulation tools such as Microsoft Excel2, R3

etc. are examples of provenance-unaware platforms. Depending on
the model developing platform, the envisioned self-adaptable frame-
work can decide whether to apply the workflow provenance inference
method or not. Since scientific models developed in a provenance-
unaware platform has no corresponding workflow provenance, the
workflow provenance inference method, discussed in Chapter 3, is
applied over the scientific model.

• Type of activities: A scientific model is comprised of several activi-
ties/operations. Workflow provenance of a scientific model not only
documents data dependencies between activities but also annotates
a number of properties for each activity. Based on these properties,

1 Available at http://www.python.org/
2 Available at http://office.microsoft.com/en-us/excel/
3 Available at http://www.r-project.org/
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we can define different categories of activities. One of these proper-
ties is hasOutput which defines whether an activity, when executed,
produces persistent output views or not. The persistence of a view
is indicated by the property IsPersistent, as discussed in Section 1.3.1.
Since scientist can only request provenance information for a data
product that is persistent, inference-based methods which infer fine-
grained data provenance, discussed in Chapter 4, 5 and 6, are only ap-
plied over activities which produce persistent view (IsPersistent=true).

The other property which needs to be considered is input-output ratio.
It refers to the ratio between the number of input tuples contributed
to produce output tuples to the number of produced output tuples.
Activities which maintain the same input-output ratio through out the
execution phase are referred to as constant ratio activities and activ-
ities which does not maintain the same input-output ratio is referred
to as variable ratio activities. Since inference-based methods, inferring
fine-grained data provenance, are directly applicable to constant ratio
activities, this is another important criterion that should be consid-
ered to design a self-adaptable framework.

• Type of input data: A scientific model computes over input data prod-
ucts. Input data might arrive continuously (e.g. data streams) during
the model execution or it can be collected before the execution begins
(e.g. offline data). All inference-based methods inferring fine-grained
data provenance are applicable to both data streams and offline data.
However, a particular inference-based method could be more suited
based on the type of input data products. Therefore, it is another
important characteristic which should be considered at the time of
deciding the most appropriate inference-based methods.

• System dynamics: System dynamics refers to a set of parameters that
control the nature of how the data products are arriving into the sys-
tem for processing and when the input data products are processed.
To be more specific, system dynamics depends on two parameters: i)
processing delay and ii) sampling interval. Processing delay refers to
the amount of time required to complete the execution of a comput-
ing processing element or an activity over a set of input data prod-
ucts/tuples. Sampling interval refers to the amount of time between
the arrival of two successive input tuples for processing. A comput-
ing processing element might be executed several times if data ar-
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rives continuously (data streams). In this case, processing delay, i.e.,
the time required to process input data tuples, could vary from one
execution to another because of the current system workload or na-
ture of the processing. This is also true for the sampling interval
as well. In case of a data stream, arrival of tuples could be either
regular or irregular because of the network delays, broken sensors
etc. The parameters showing variation in their values over a time pe-
riod require special attention to infer fine-grained data provenance.
Therefore, both processing delay and sampling interval have to be
considered to select the most appropriate inference-based methods.

As discussed in Section 1.3, the aforesaid characteristics define a par-
ticular scientific model. Since the goal of the self-adaptability is to select
the most appropriate inference-based methods based on a given scientific
model, these characteristics need to be considered. In a nutshell, devel-
oping an inference-based framework to manage both workflow and fine-
grained data provenance requires attention to the underlying platform
along with the system dynamics including characteristics of processing el-
ement/activity and data products. The inference mechanisms should take
variation in the used environment, processing delay and data arrival pat-
tern into consideration to infer highly accurate provenance information. To
accomplish that, a self-adaptable framework is required which can decide
when and how to execute the most appropriate inference-based methods
based on a given scientific model and it’s associated data products.

7.2 decision tree of self-adaptable framework

We propose to incorporate self-adaptability into the framework inferring
fine-grained data provenance by facilitating a decision tree. The decision
tree shown in Figure 7.1 considers the key characteristics discussed in Sec-
tion 7.1 to select the most appropriate inference-based method for a given
scientific model.

The decision making process starts when a scientist decides to use the
framework. First, the development platform of the model is considered. If Checking

model
developing
platform

the model is developed using a provenance-aware platform, the workflow
provenance graph is readily available. Otherwise, the framework decides
to apply the workflow provenance inference method to infer the workflow
provenance. The documented workflow provenance of the scientific model
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is represented as a graph, referred to as workflow provenance graph. The
annotated characteristics of processing elements/activities in the workflow
provenance graph is used in the decision process.

The next phase of the decision making process is executed per comput-
ing processing element/activity in the workflow provenance graph. First,
the framework considers whether the computing processing element/ac-
tivity generates a persistent view or not. If the particular processing element
does not produce a persistent view, the decision making process stops
and considers the next processing element since scientists cannot request
provenance for an output tuple in a non-persistent view. Otherwise, the Checking

type of
activities

framework considers the input-output ratio of the given processing elemen-
t/activity in the next step. If the input-output ratio of the given processing
element is variable like selection operations in a database, the decision tree
then considers the selectivity rate, i.e., the percentage of input data prod-
ucts to be selected for processing within a processing window if the given
condition is met. If the processing element has high selectivity rate, then
it switches NULL value mode ON referring to the inclusion of NULL data
products in the output view if the corresponding input data product is not
selected for processing. The inclusion of NULL data products in the output
view transforms the input-output ratio of the activity from variable ratio to
constant ratio (‘one to one’). Furthermore, it also ensures that the output
data product is created in the same order as the appearance of the con-
tributing input data product satisfying the assumption on order of tuples in
the output view, as discussed in Section 4.5. Therefore, the framework can
apply inference-based methods now. If the computing processing element
has low selectivity rate, inclusion of NULL data products in the output
view will incur more storage overhead and one of the major advantages
of using inference-based methods is canceled out. Therefore, the decision
making process decides to use explicit provenance method for the given
model.

After checking the selectivity rate, if the framework decides that inference-
based methods can be applied on the given model (e.g. high selectivity
rate) or if it finds that the given computing processing element has con- Checking

type of
input data

stant input-output ratio, it executes the next step. In this step, the decision
process checks the type of available input data, i.e., data streams or offline
data. If the model uses offline data for calculation, the decision process
further checks whether the computing processing element/activity has a
non-persistent view as an input or not. If an activity has a non-persistent
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input view, it indicates that the workflow has multiple processing steps
with intermediate results and therefore, the framework decides to apply
a variant of the multi-step probabilistic provenance inference method which is
appropriate for offline data with multiple processing steps. This version of
the multi-step probabilistic provenance inference method follows the same
principle as the basic provenance inference method, i.e., constant process-
ing delay and constant sampling interval. On the contrary, if an activity has
a persistent input view, the framework decides to apply the basic provenance
inference method which is suitable to offline data with persistent input data
products.

Otherwise, in cases of data streams, the framework considers the set of
parameters defining system dynamics. It checks whether there exists distri-Checking

system
dynamics

butions of the parameters processing delay and sampling interval as these
are required by the probabilistic provenance inference and the multi-step prob-
abilistic provenance inference method. If these distributions do not exist, the
framework has to collect this information for a pre-defined time interval
during the actual execution of the model. After collecting the required dis-
tributions at run-time if necessary, the decision making process now checks
the nature of these distributions. If it finds that both processing delay and
sampling interval remain constant, the decision process checks for a non-
persistent input view and takes the decision accordingly as discussed in
the last paragraph. On the other hand, if there is a variation in processing
delay and/or sampling interval, the framework again checks whether the
computing processing element/activity has a non-persistent view as an in-
put or not. If the computing processing element has a non-persistent view
as an input, it means that the given workflow has multiple processing steps
with non-persistent intermediate results. Therefore, in this case, the most
suitable method to infer fine-grained data provenance is the multi-step prob-
abilistic provenance inference method. Otherwise, the framework selects the
probabilistic provenance inference method.

Figure 7.1 shows the complete decision tree which is facilitated by the
framework to take the decision of selecting the best suited inference-based
method. By selecting the best suited method, a self-adaptable framework
always infers optimally accurate provenance information. Figure 7.1 also
shows a few built-in methods which monitor the variation in the process-
ing delay and sampling interval distribution and keep track of these values
so that the framework can adapt the decision based on the current context
during model execution.
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7.3 discussion

The inference-based framework managing data provenance, has the capa-
bility of being a self-adaptable framework by using the decision tree dis-
cussed in Section 7.2. The decision tree takes several key characteristics
of a scientific model into account to facilitate the decision making pro-
cess. The decision making process of the self-adaptable, inference-based
framework could be further enhanced by estimating the performance of
these inference-based methods in terms of storage consumption and ac-
curacy. Performance estimation is possible by introducing a cost metric
based on appropriate parameters. Some of these parameters are already
documented in workflow provenance information such as window size,
trigger interval, processing delay distribution, sampling interval distribu-
tion etc. Different distributions could help us to estimate the accuracy of
an inference-based method which could be applied over a given scientific
model. Chapter 5 and 6 discuss accuracy estimation technique for the prob-
abilistic provenance inference and the multi-step probabilistic provenance
inference method, respectively. However, more parameters are required to
estimate the storage consumption of inference-based methods and com-
pare them with explicit provenance collection techniques. These param-
eters include size of input data tuple, size of output data tuple, size of
provenance data tuple etc. A study on this cost metrics to estimate per-
formance of inference-based methods would also help scientists to assess
the applicability of a particular inference-based method. In this thesis, the
complete assessment of applicability of inference-based methods based on
a cost metric is not discussed due to the lack of time. However, one can
get a preliminary insight of this assessment based on the evaluation results
reported in Chapter 4, 5 and 6. A complete assessment of applicability of
inference-based methods in terms of storage consumption and accuracy
based on a cost metric is a potential direction that could be investigated in
future.

7.4 summary

In this chapter, we explained the process of achieving a self-adaptable,
inference-based provenance management framework. Self-adaptability is
an important feature which allows the framework to adapt with the current
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situation. Necessity of a self-adaptable framework was pointed out by the
third research question (RQ 3) in this thesis, as discussed in Section 1.4.

The characteristics of a scientific model should be understood first to
achieve a self-adaptable framework. We discussed a few characteristics of
a scientific model in Section 1.3. Based on this discussion, in this chap-
ter, we described the key characteristics of a scientific model which needs
to be considered to incorporate the self-adaptability into the framework.
Next, we presented a decision tree and explained the decision making pro-
cess based on these key characteristics. The framework takes the decision
of the most appropriate inference-based method based on current system
dynamics and characteristics of the given scientific model by facilitating
the decision tree. Finally, we discussed the possibility of an enhancement
of the decision making process by including the assessment of applicabil-
ity of inference-based methods based on a cost metric. We would like to
thoroughly investigate this topic in future.
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8
C A S E S T U D Y I : E S T I M AT I N G G L O B A L WAT E R
D E M A N D

The increasing data volume and highly complex scientific models used
in different domains make it difficult to debug scientific models in cases
of anomalies. Mostly scientists would like to trace the origin of an unex-
pected/abnormal output data product back to it’s source data products.
This way of debugging is referred to as instance-driven debugging. Most
high-level programming languages such as Java1 or Python2 have their
own debuggers that enable developers/scientists to monitor the execution
of a program/model. These debuggers allow developers to trace back the
value of a particular variable only at execution time. Furthermore, it often
becomes too difficult to trace back until a desired point within the source
code because of the complexity of the program and the time and manual
effort it takes.

In this thesis, an inference-based framework managing data provenance
is proposed. The framework is capable of extracting a data-driven work-
flow based on a given program and can annotate it with values of data
products/tuples, reducing the effort of instance-driven debugging. In Chap-
ter 3, we discussed workflow provenance inference method which automat-
ically extracts the data-driven relationship among operations/processing
elements, called workflow provenance graph, based on a given Python

This chapter is based on the following work: An Inference-based Framework to Manage
Data Provenance in Geoscience Applications. Accepted in IEEE Transactions on Geoscience
and Remote Sensing, IEEE Geoscience and Remote Sensing Society, 2013. (Impact Factor:
2.895) & From scripts towards provenance inference. In Proceedings of the IEEE International
Conference on E-Science (e-Science’12), pages 118–127, IEEE Computer Society, 2012.

1 Available at http://www.java.com/en/
2 Available at http://www.python.org/
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program. Later, we presented three inference-based methods to infer fine-
grained data provenance under different system dynamics in Chapter 4, 5

and 6. Upon the availability of actual input and output data products, these
inference-based methods provide a fine-grained data provenance graph by
annotating values of contributing input data products and produced out-
put data products based on the given workflow provenance graph. There-
fore, the inference-based framework allows scientists to trace back an out-
put data product without even executing the actual program, realizing a
scientific model.

In this chapter, we present a case study which describes the process of
applying the proposed inference-based framework over a scientific model
that estimates the global water demand [127]. The scientific model is devel-
oped in Python. Since Python has no built-in support to extract workflow
provenance automatically, scientists have to rely on their own expertise to
identify data dependencies manually between different operations within
the program in case of an unexpected result. This debugging becomes
more difficult and time consuming since the model processes a massive
amount of offline data, stored in around 4000 flat files. Therefore, once
scientists encounter any output with an unexpected value, it becomes a
tedious job not only to find the contributing input values producing that
unexpected output but also to visualize the data-driven relationship be-
tween different operations. Since the proposed inference-based framework
can address such complexity of instance-driven debugging, we apply the
framework over this scientific model. Evaluation of the inference-based
framework based on this case demonstrates relevance and applicability of
the proposed framework to scientific experiments.

This chapter is organized in the following way. First, we describe theChapter
structure use case of estimating global water demand followed by the description

of a few key characteristics of this scientific model. Next, we provide an
overview of how the inference-based framework is applied over this model
followed by the discussion on extracting data-driven workflow provenance
of the scientific model and inferring fine-grained data provenance. Finally,
we evaluate the performance of the inference-based framework based on
a couple of interviews with scientists who develop this scientific model
followed by the discussion on a few limitations of the framework within
the context of this case study.
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8.1 use case : estimating global water demand

Freshwater is one of the most important resources for various human activ-
ities and food production. During the past decades, use of water has been
increased rapidly, yet available freshwater resources are finite. Therefore,
estimating water demand and availability on a global level is necessary to
assess the current situation as well as to make policies for the future. In
this use case, we focus on a scientific model that estimates the total water
demand from the year 1960 to 2000 at a monthly resolution.

8.1.1 Model Inputs

Source data are collected from different existing datasets to estimate the
amount of water that is required globally. The scientific model combines
irrigated areas, crop-related data and simulated potential and actual evap-
oration and transpiration, which are all processed at a 0.5◦ grid spatial
resolution, i.e., 50 km by 50 km, and at a monthly temporal resolution.
Irrigated areas are prescribed by the MIRCA2000 dataset [104] and the
FAOSTAT database3. Crop factors, growing season lengths, and rooting
depth are obtained from GCWM [112]. The irrigated areas are representa-
tive for the period 1960-2000 at a yearly temporal resolution, i.e., remains
constant over each year, while the crop-related data sets are representative
for the year 2000 at a monthly temporal resolution. A map of country-
specific irrigation efficiency factors is also obtained from [107]. In addition,
daily potential and actual bare soil evaporation and transpiration are pre-
scribed from the simulation results from the global hydrological and water
resources model PCR-GLOBWB [120]. Various units are used during the
calculation, but water demand is subsequently expressed as volume per
time such as million m3 month−1.

Figure 8.1 shows input and output datasets and data dependencies be-
tween them. The rectangles represent input datasets collected from various
sources and the shaded ones represent output datasets. A directed edge
represents the data dependency of the target dataset on the source dataset.
All datasets are PCRaster4 maps, containing 360×720 cells. Moreover, el-
lipses in Figure 8.1 represent simulation models.

3 Available at http://faostat.fao.org/
4 Available at http://pcraster.geo.uu.nl/
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Figure 8.1: Different types of datasets used to estimate global water demand

8.1.2 Model Computation

The process begins with reading the annual and monthly input maps de-
scribed in Section 8.1.1. First, using irrigated areas, crop factors, growing
season lengths and potential transpiration, the model calculates potential
crop transpiration per layer; the first and second layer represents for shal-
low and deep soil, respectively. Transpiration is a part of the water cycle
and the loss of water vapor from parts of plants, i.e., in this case, irrigated
crops. Due to the limited availability of soil water, transpiration at a poten-
tial rate is not often achieved, and the difference between potential and ac-
tual crop transpiration is required to be supplied by irrigation water to en-
sure the optimal crop growth for irrigated crops. Then we calculate actual
crop transpiration by using the fraction of actual to potential transpiration,
and with rooting depth to estimate the amount of soil water available to
root zones. In addition, we compute the difference between potential and
actual bare soil evaporation for the top soil layer. This water also needs
to be applied over the irrigated areas to prevent soil salinization. Net irri-
gation water demand thus equals the sum of the differences between the
potential and actual crop transpiration, and between the potential and ac-
tual bare soil evaporation which ensures maximum crop growth over the
irrigated areas [127]. However, much of this water is lost to evaporation

226



8.2 model characteristics

and percolation during the transport and application. So, water in excess
of the net demand has to be applied. Therefore, we use country-specific ir-
rigation efficiency factors and multiply these with the net irrigation water
demand to yield gross irrigation water demand. The top part in Figure 8.1
shows related input and output datasets to calculate gross irrigation water
demand. These datasets are enclosed within a module which is referred to
as module 1.

After computing the gross irrigation water demand, PCR-GLOBWB model
is used to calculate the return flow to groundwater or groundwater recharge
from irrigation. This water is vital when estimating renewable groundwa-
ter resources, which is used in subsequent studies [126]. Return flow to
groundwater is calculated by taking the minimum of irrigation losses, i.e.,
the difference between the gross and net irrigation water demand, and
the unsaturated hydraulic conductivity of the bottom soil layer [128]. The
bottom-right part in Figure 8.1 shows the module that calculates return
flow to groundwater, also referred to as module 2.

At last, the estimated gross irrigation water demand is added to other
sectoral water demands such as industrial, domestic and livestock water
demand, to calculate the total water demand. These values are directly
read from the corresponding input maps. This process is shown by module
3 in Figure 8.1, placed at the bottom-left corner.

8.1.3 Model Outputs

The model reports the resulted total water demand, gross irrigation wa-
ter demand, irrigation return flow and other water demands as PCRaster
maps (shaded rectangles in Figure 8.1) for each year from 1960 to 2000 at
a monthly temporal resolution.

In this use case, we mainly focus on the process that calculates total
water demand and gross irrigation water demand, carried out by module 1
and module 3 as shown in Figure 8.1.

8.2 model characteristics

The inference-based framework is applied over the aforesaid scientific model
based on the decision tree, discussed in Section 7.2. The framework facili-
tates the decision tree to select the best suited inference-based method that
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could be applied over the scientific model. To accomplish that, the decision
making process takes a few characteristics of the model into consideration.
In this section, we briefly discuss the key characteristics of the aforesaid
scientific model.

The scientific model, estimating global water demand, is developed in
Python. As described in Section 1.3, Python is a general purpose program-Model

developing
platform

ming language and has no built-in support to collect data provenance.
Therefore, based on the definition given in Section 1.3, we can classify
the model as the one which has been developed in a provenance-unaware
platform.

The aforesaid model is comprised of many operations which are realized
by a Python program using PCRaster package. These operations are re-
ferred to as activities. Some of these activities are arithmetic operators, per-Type of

activities forming addition, subtraction, multiplication etc. between two input maps.
Other activities such as cover replaces a missing value with an appropriate
one depending on its parameters which are input maps. All these activities
perform their intended operation by considering each cell of given parame-
ters, i.e., input maps, and produce corresponding output. Therefore, these
activities are executed on the cell level. One important characteristic of
these activities is their input-output ratio. Since these activities are executed
on cell level, all these activities have constant input-output ratio.

The input dataset used in this scientific model has been collected before.
Therefore, the model estimates global water demand based on offline orType of

input data non-stream data products. The input dataset has around 4000 PCRaster
maps which produce water demand map in a global level from year 1960-
2000 at a monthly resolution.

The system dynamics of the scientific model is another important char-
acteristic to consider. System dynamics include a set of parameters thatSystem

dynamics describes the time required to process input data products, referred to as
processing delay, as well as the time between the arrival of two successive
input data products, referred to as sampling interval. Since the model facili-
tates offline input data products for calculation, these two parameters have
no effect over actual execution of the model.

In a nutshell, the aforesaid scientific model is developed in a provenance-
unaware platform. The model consists of several constant ratio activities
which facilitate offline data to produce output. Parameters like processing
delay and sampling interval have no effect during execution because of the
offline processing nature of the model.

228



8.3 overview : applying inference-based framework

8.3 overview : applying inference-based framework

In previous section, we described a few key characteristics of the scien-
tific model that estimates global water demand. As explained in Section
8.2, the model has been developed in a provenance-unaware platform, using
Python language. Therefore, we can apply the workflow provenance inference
method, discussed in Chapter 3, to extract the workflow provenance of the
model automatically. Workflow provenance information is represented as
a graph, referred to as workflow provenance graph, showing the data-driven
relationship among all activities on a cell level. Next, we can infer fine-
grained data provenance by facilitating the workflow provenance graph
and available data products. Fine-grained data provenance inference phase
is only executed when scientists request provenance for a particular out-
put data product which seems to have an unexpected value. In this case,
since input and output data products are already available, we can initi-
ate the fine-grained provenance inference phase without even executing
the scientific model. This phase provides an inferred fine-grained data
provenance graph which is annotated by the actual values of input and
output data products by facilitating the data-driven workflow provenance
graph. Next, we describe workflow provenance inference method and fine-
grained provenance inference method which are applied over the aforesaid
scientific model.

8.4 workflow provenance inference

As mentioned in Section 8.3, workflow provenance inference method, dis-
cussed in Chapter 3, is applied over the Python program, realizing the
computation of the scientific model. The Python program is comprised
of several activities, realizing different kinds of operations which include
assignment, looping, PCRaster operations etc. Operations such as assign-
ment, PCRaster operations are purely based on data-flow coordination
where availability of data triggers the next activity. However, operations
like looping is implemented by using control-flow based coordination and
results into control dependencies between pertinent activities. Since data
provenance identifies the data dependencies between activities, control de-
pendencies must be transformed into data dependencies to infer workflow
provenance.

229



case study i : estimating global water demand

Parsing
Python 

Program
Traversing 

TransformingRe-writing

Abstract 

Syntax Tree

List of Objects

Initial 

Provenance 

Graph

Workflow 

Provenance 

Graph

Action

Input/Result 

to/of an action

Legend

Figure 8.2: Steps during workflow provenance inference

Figure 8.2 depicts the steps associated with the workflow provenanceMechanism

inference method which is applied over the aforesaid model. In Figure 8.2,
ellipses represent either input or output of a particular action/step which
is represented by a corresponding round-shaped box. First, the workflow
provenance inference method takes the Python program as an input. Then,
the method parses the given Python program based on a combined gram-
mar, containing parser and lexer rules. After parsing the script, it returns
an abstract syntax tree (AST) for the given Python program. Then, the
method traverses through this AST by facilitating a tree grammar and for
each node in the AST, an object of the appropriate class based on the ob-
ject model of Python is created. The outcome of the traversing step is a
list of objects. Then, the method transforms this list of objects into an ini-
tial workflow provenance graph based on the workflow provenance model,
discussed in Section 3.1. The initial workflow provenance graph has four
types of nodes such as source processing elements, computing processing
elements, constants and views. This graph preserves control-flow based
coordination between nodes and therefore, it has to be transformed into a
form where the initial workflow provenance graph exhibits data dependen-
cies only. To do this, the workflow provenance inference method applies a
set of functions, consisting of graph re-write rules, discussed in Section 3.6,
3.7 and 3.8. A re-write rule has two parts: left-hand side (LHS) and right-
hand side (RHS). Once a rule is defined and is executed, it searches for the
isomorphic sub-graph equivalent to the sub-graph pattern mentioned in
the LHS of the rule. If the isomorphic sub-graph is found, it is replaced by
the sub-graph pattern mentioned in the RHS of the rule. This process con-
tinues till no other isomorphic sub-graph equivalent to the LHS sub-graph
pattern exists.

At the end of the re-writing step, the workflow provenance graph of
the given Python program is extracted, showing data-driven relationship
among activities. The Python program, realizing the computation of the
aforesaid scientific model, has 116 lines of code. Table 8.1 shows the num-
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Table 8.1: Comparison of Number of Nodes in provenance graphs

Initial Final

Workflow Workflow

Provenance Provenance

Node Type Graph Graph

Source processing elements 33 33

Computing processing elements 147 93

Constants 58 0

Views 180 0

Total nodes 418 126

ber of nodes in both initial workflow provenance graph and workflow
provenance graph. The initial workflow provenance graph has 418 nodes.
After applying different re-write rules on this graph, total number of nodes
in the final workflow provenance graph becomes 126 which is around one-
third of the initial workflow provenance graph in size. In Table 8.1, we can
see that the number of both constant nodes and view nodes are 0 in the
workflow provenance graph. This is because of applying the graph com-
pression re-write rules, discussed in Section 3.8, which encode constant
and view nodes properties into corresponding source processing elements
or computing processing elements and then delete that particular constan-
t/view nodes.

A workflow provenance graph depicts the data-driven relationship among
different processing elements within the model. Furthermore, a workflow
provenance graph also documents the values of properties of different
nodes as discussed in Section 3.1. Next, a workflow provenance graph is
facilitated during fine-grained provenance inference phase.

8.5 fine-grained data provenance inference

The fine-grained provenance inference phase is executed once scientists
request provenance information of an output data product which seems to
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have an unexpected value. To infer fine-grained data provenance, first, we
need to import input and output data products into a database. We create
a SQLite5 database for this purpose. In this use case, there are around 4000
PCRaster6 maps. Each map contains 720× 360 = 259200 cells. We create
a data tuple/row for each cell. Further, we attach a timestamp to every
data tuple, representing the point in time a particular tuple is valid. As
an example, if a particular tuple is valid during June, 1990, the timestamp
field is set to 1990− 06. The total number of data tuples in the database is
more than 1 billion which require around 50 GB of storage space.

After importing data products into a database, the appropriate fine-Mechanism

grained provenance inference method is executed. The self-adaptability na-
ture of the framework selects the appropriate inference-based method by
facilitating the decision tree, shown in Figure 7.1. As already mentioned
in Section 8.2, the scientific model computes over offline data. These of-
fline data participates in a series of activities/operations, i.e., a processing
chain, based on the captured workflow provenance. Therefore, we apply
a variant of the multi-step probabilistic provenance inference method based
on the decision making process, discussed in Section 7.2. This version of
the multi-step probabilistic provenance inference method has a few differ-
ence with the original one, discussed in Chapter 6. This inference-based
method has no dependency over any specific distributions that describe
system dynamics because of the offline nature of the processing and data
products. Therefore, the variant of the multi-step probabilistic provenance
inference method follows the same principle of the basic provenance in-
ference method, discussed in Chapter 4, but can be applied over multiple
processing steps with non-persistent, intermediate result.

The outcome of this inference phase is a fine-grained data provenance graph
which annotates the workflow provenance graph of the scientific model
with the exact value of contributing input data products. Scientists can
facilitate a fine-grained data provenance graph to trace an output data
product having unexpected value back to it’s source values.

5 Available at http://www.sqlite.org/
6 Available at http://pcraster.geo.uu.nl/
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8.6 evaluation

The inference-based framework, discussed in this thesis, is evaluated by fa-
cilitating the use case based on the scientific model estimating global water
demand which is discussed in Section 8.1. The proposed inference-based
framework achieves 100% accurate fine-grained data provenance without
consuming any extra storage space to store provenance data.

Furthermore, we had a couple of evaluation sessions with two scien-
tists who are working on this use case to discuss potential applications of
fine-grained data provenance graphs. The transcript of these meetings is
documented in Appendix A.2. We arranged two evaluation meetings with
the scientists. During the first evaluation meeting, we presented the prelim-
inary results, i.e., fine-grained data provenance graphs, and demonstrated
the initial version of the prototype, realizing the proposed framework. We
also asked them a few questions about the applicability of fine-grained
data provenance graphs. Scientists also provided their feedback on differ-
ent aspects of the developed tool.

Based on the feedback of the scientists, we extended the prototype and
tested it with different types of Python programs. After finalizing the pro-
totype, we arranged another evaluation session with the scientists. In this
session, we asked them a few open-ended questions on several features
of the proposed framework. These features are: i) ease of debugging, ii)
extensibility and iii) reproducibility. Next, we present the key points dis-
cussed during these evaluation sessions. Transcripts of these sessions are
documented in Section A.2.4 and A.2.4.

8.6.1 Ease of Debugging

Debugging is an emerging application of data provenance [74]. Both work-
flow debugging (code-level) and instance-driven debugging (value-level)
are possible based on the granularity level of provenance information.
In the context of this inference-based framework, a workflow provenance
graph, which automatically captures provenance from a Python program,
shows the data-flow of the program and hence, can be used for code-level
debugging. A fine-grained data provenance graph shows the contributing
values and hence, can be facilitated to satisfy a request of value-level de-
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bugging. In this connection, we would like to highlight a point raised by
one of the scientists during the first evaluation session.

When I (the scientist) encounter a value which seems to be unex-
pected, I would like to trace back to source values which contribute to
produce the abnormal one. To do that, I (the scientist) must find all
contributing points out of hundreds of input maps which is quite time
consuming and frustrating. The built-in debugging option of Python
does not help much because of the complexity of the operations as well
as the length of the processing chain, i.e., large number of operations.
I (the scientist) would be happy to have a tool that can show me all
contributing values automatically and within a short time period.

The aforesaid point motivates the potential use of data provenance for de-
bugging purpose well. In this connection, we asked the following question
to the scientists.

Question

To what extent do you think that the provenance graphs are useful for
debugging? Do provenance graphs make debugging easier than built-in
debuggers?

Feedback

Scientists appreciate the idea of debugging their model using provenance
graphs. Workflow provenance graphs enable code-level debugging which
is useful to determine the efficiency of the code, i.e., finding out code rep-
etition within a program. Workflow provenance graphs are also useful to
compare two different versions of the code, expected to produce the same
value.

Fine-grained data provenance graphs enable value-level debugging. A
fine-grained provenance graph generated for a particular instance/output
data product shows all contributing input data products with their values.
Therefore, it provides easy access to actual data within short period of
time. Fine-grained provenance graphs also prove beneficial while tracing
back to identify the missing values in the file which is another aspect of
value-level debugging.

Usually, scientists use the debugging option that comes with the devel-
opment environment. However, the classical debugging technique requires
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scientists to understand related operations completely and it also requires
scientists to interpret the debugging results. Therefore, it is a time consum-
ing process and requires necessary expertise.

8.6.2 Extensibility

Another feature of the proposed inference-based framework is the exten-
sibility of the framework. Extensibility refers to the ability to handle dif-
ferent Python programs and extracting workflow provenance graphs out
of them. Our prototype of the framework can handle varieties of Python
programs using different libraries. However, a user has to provide a few
parameters for each method signature at the very first occurrence of the
method while executing the prototype. These parameters include whether
the method reads persistent data or not (e.g. true/false) and whether the
method writes persistent data or not (e.g. true/false). We asked scientists
the following question regarding extensibility.

Question

To what extent do you think that the extensibility of the proposed frame-
work is justified?

Feedback

The proposed approach is generic in the sense that it can handle a variety
of Python programs and can extract workflow provenance graphs out of
those. However, during the first time execution of the prototype, the user
has to enter method-specific information which might be time consuming
and also requires some training on how to provide this information to the
framework.

8.6.3 Reproducibility

Reproducibility refers to the ability to produce the same result using the
same set of input data products, irrespective of the time of the execution
of the involved operations. Data provenance can help scientists to achieve
reproducible results. Since the proposed inference-based framework infers
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fine-grained data provenance, we asked scientists the following question
regarding reproducibility.

Question

To what extent do you think that a fine-grained provenance graph is useful
to achieve reproducibility? How do you use your reproducible results?

Feedback

A fine-grained data provenance graph shows source data values contributed
to produce a result which explains the derivation history of that particular
output and also provides a replication recipe of that output. In practice,
reproducible results might be useful to explain the mechanism of the sci-
entific model to one of the other scientists from the same group. However,
the exchange of reproducible results from one research group to another
is not very common.

8.6.4 Remarks

Based on the interview with scientists, we have found that scientists like
the idea of tracing back to the input datasets by facilitating fine-grained
data provenance information. Furthermore, workflow provenance graph is
also useful to them since it explains the complete mechanism of the sci-
entific model visually which is easy to understand and learn. In future,
we would like to conduct a usability study on using data provenance
as a debugging tool among a large group of scientists. Extensibility of
the framework ensures that the developed prototype can handle different
Python programs. However, the method-specific information must be en-
tered once during the first time execution of the prototype. Since it requires
a few parameters, potential users could be trained with a reasonable effort.
Scientists also recognize that fine-grained data provenance graphs help to
achieve reproducible results which could be used to validate the scientific
model. Overall, the inference-based framework managing data provenance
could possibly satisfy scientists with its simplicity and ease to use.
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8.7 discussion

8.7 discussion

The inference-based framework, discussed in this thesis, is applied over the
scientific model estimating global water demand. The evaluation shows
that scientists who develop the model are satisfied with the performance
and features of the framework. The framework infers 100% accurate fine-
grained data provenance. The reasons to achieve maximum accuracy is
that the available data products are offline in nature and the processing is
also executed offline. Therefore, there is no influence of variable processing
delay and sampling interval over the inference method.

However, there is one particular situation where applicability and accu-
racy of the inference-based framework could be compromised. Next, we
discuss this limitation of the framework in the context of this use case,
discussed in this chapter.

8.7.1 Recursive Operations

The scientific model estimating global water demand uses Python pro-
grams with PCRaster7 libraries. PCRaster is a programming package that
defines and supports many spatio-temporal operations. The Python pro-
gram realizing the scientific model has different classes of operations such
as arithmetic, boolean, missing value creation etc. All these operations are
executed on a cell level. The proposed framework can handle these oper-
ations and extract a workflow provenance graph automatically from the
given program.

However, there is a class of operations in PCRaster package, named as
neighborhood operations. Operations falling in this category are consid-
ering the neighborhood cells while calculating some value for a particular
cell. It means that the value of a cell (x,y) depends on the neighboring cells
which construct an imaginary square having (x+ 1,y+ 1) as top-right cor-
ner and (x− 1,y− 1) as bottom-left corner. Furthermore, these operations
are recursive in nature.

One of the limitations of the inference-based framework is its inabil-
ity to handle recursive operations since it is quite difficult to determine
the input-output ratio of a recursive operation in advance. Input-output ratio
refers to the ratio between number of contributing input tuples producing

7 Available at http://pcraster.geo.uu.nl/
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output tuples and number of produced output tuples and it is an impor-
tant parameter during the inference phase. Even if we can figure out the
input-output ratio of a recursive operation, representing all contributing
tuples in a recursive operation would significantly increase the size of a
fine-grained data provenance graph. Due to these limitations, the proposed
inference-based framework is not suitable for recursive operations.

8.8 summary

In this chapter, we presented a case study, applying the proposed inference-
based framework over a scientific model that estimates the global water de-
mand. First, we introduced the use case based on the scientific model. The
scientific model computes over different types of input data products, col-
lected from different sources beforehand. Therefore, the data products are
offline data (non-stream) and the model is also executed offline. Next, we
identified the key characteristics of the scientific model. These characteris-
tics are considered by the self-adaptability nature of the framework to ap-
ply the appropriate inference-based methods over the scientific model. This
decision making process facilitates the decision tree, discussed in Chapter
7. Since the model is developed in Python which is a provenance-unaware
platform, the decision making process applies the workflow provenance
inference method, discussed in Chapter 3, to extract a workflow prove-
nance graph automatically based on the given Python program. Later, the
workflow provenance graph is used during the fine-grained provenance in-
ference phase. During this phase, the self-adaptability nature of the frame-
work, discussed in Chapter 7, decides to apply a variant of the multi-step
probabilistic provenance inference method which is tailored for offline data
and offline processing. The inference-based framework achieves 100% accu-
rate fine-grained data provenance without having any extra storage over-
head to maintain provenance data. Furthermore, we conducted a couple
of evaluation sessions with scientists who developed this model. Scientists
accepted the importance of data provenance especially for instance-driven
debugging and fine-grained provenance graphs serve that purpose well. In
sum, the proposed inference-based framework has features relevant and
suitable for scientists who would like to keep track of provenance data at
minimal effort and time for their scientific experiments.
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9
C A S E S T U D Y I I : A C C E S S I B I L I T Y O F R O A D
S E G M E N T S

Data provenance is often used for auditing and debugging of data
intensive applications [114, 74]. It allows scientists working in different do-
mains, to trace the origin of a data product and to validate their models. In
case of a highly complex model and massive amount of data to deal with,
data provenance provides an easy access to source values which contribute
to produce a particular output value.

An inference-based framework inferring data provenance of a scientific
model is proposed in this thesis. The framework is capable of extracting
the workflow provenance based on a given program of a model and can
annotate the workflow provenance with values of participating data prod-
ucts/tuples, i.e., fine-grained data provenance. In Chapter 8, we demon-
strated the applicability of the inference-based framework on a scientific
model estimating global water demand which is developed in Python.
The framework can extract workflow provenance automatically based on
a given Python program and can also infer fine-grained data provenance
of a selected output data product/tuple which explains the derivation his-
tory of that particular tuple. Therefore, fine-grained data provenance can
be used as a potential debugging tool to know the origin of a particular
data product/tuple, also referred to as instance-driven debugging.

To broaden the scope of the framework, we extend the framework be-
yond procedural languages, to be used for purely declarative languages
such as logic programming under the stable model semantics. A class of

This chapter is based on the internal report: Data Provenance Inference in Logic Program-
ming: Reducing Effort of Instance-driven Debugging. Technical Report TR-CTIT-13-11, Cen-
tre for Telematics and Information Technology, University of Twente, 2013.
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these languages based on the stable model semantics, namely Answer Set
Programming (ASP), has been intensively applied in the last decade to
solve computationally hard problems [52]. The ability to deal with incom-
plete knowledge, conflicting and noisy input and common sense reasoning
made ASP applicable to domains such as civil engineering, home health-
care, sensor networks, planning, bio-informatics, phylogenesis, system bi-
ology, industrial applications and more [101, 88, 89, 39, 49]. Despite this
wide applicability, explaining unexpected outcome in an instance-driven
way, by detecting errors in the knowledge model or in the inference rules
related to a particular output data product, is still under investigated.
Therefore, in this chapter, we demonstrate the viability of the proposed
framework as an additional tool for debugging ASP programs.

We apply the inference-based framework over a scientific model, based
on an ASP program, that provides an indication on the accessibility rating
of a particular road segment by facilitating streaming data from different
sources such as twitter, rss and weather update etc. The accessibility rating
of a road segment is based on the traffic delay, i.e., whether it is expected
that traveling along this road will cause delays or not. For experiments
and validation, we use the Answer Set Programming solver oClingo [50],
which makes it possible to formulate and solve stream reasoning problems
in a purely declarative fashion. We demonstrate how the benefits of the
inference-based framework, discussed in this thesis, over the explicit prove-
nance collection method still holds in a declarative setting. Furthermore,
we briefly discuss the potential impact of the framework over declarative
programming, in particular for instance-driven debugging of the model in
declarative problem solving.

This chapter starts with an overview on Answer Set Programming. Then,Chapter
structure we describe the use case of determining accessibility of road segments in

a particular region followed by the description of the key characteristics
of the model. Next, we provide an overview of how the inference-based
framework is applied over this model followed by the discussion on extract-
ing workflow provenance of the scientific model and inferring fine-grained
data provenance. Finally, we evaluate performance of the inference-based
framework by providing both quantitative and qualitative analysis fol-
lowed by discussion on a few limitations of the current approach in the
context of this case study.
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9.1 background on answer set programming

Answer Set Programming (ASP) [10, 83, 52] is a purely declarative and non-
monotonic logic programming paradigm. It applies “generate and test”
approach, based on the stable model semantics [54] where solutions are
represented by sets of atoms (answer sets) for which all rules in the program
are satisfied. ASP enables programmers to model solutions to a particular
problem by defining what valid outputs are, rather than how those outputs
should be derived.

One of the distinguishing features of ASP is its ability to derive multiple
answer sets. This is primarily achieved through non-monotonicity and the
use of Negation As Failure (NAF). In general, this allows ASP to perform
default reasoning as well as the ability to non-deterministically derive so-
lutions even when reasoning under incomplete knowledge. Additionally,
ASP’s declarativeness means that the ordering of statements is irrelevant.

In this chapter, we focus on scientific models with complex stream rea- Stream
reasoningsoning capabilities based on ASP, which can offer these reasoning capabili-

ties along with pure declarativity in the problem specification [51]. Stream
processing and reasoning [36, 35, 117] are a relatively new area of research
individually concerned with processing large amounts of dynamically gen-
erated data. While stream processing is under active research for several
years already, stream reasoning is a relatively new field which focuses on
manipulating streaming data as knowledge through abstraction and logic
inference.

While some attempts have been made to re-purpose ASP reasoners for
streaming data [37], The current work by Gebser et al. [50] provides an all
encompassing software solution to ASP-based stream reasoning. oClingo
is an Answer Set Programming reasoner designed to work similarly with
the normal syntax and semantics of the language, but with the addition of
new functionality to allow for the streaming input of data. It is primarily
based on their previous work into incremental based ASP reasoning [48]
in which external data was sequentially passed as input into the reasoner
to provide continuous results.

oClingo has the ability to reason upon different frames of reference in
addition to its powerful ASP-based reasoning. This allows programmers
to define reasoning tasks in which temporal information can be deliber-
ated upon and solutions to frame-based problems (e.g. involving sliding
windows of knowledge) could be encoded. The oClingo implementation
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Table 9.1: Relevant oClingo ASP Syntax

Syntax Description

h← a1, ...,am[,not am+1, ...,not an]. Logical rule

a← . Fact

← a1, ...,am[,not am+1, ...,not an]. Constraint

l{h1, ..,hn}u← Choice [rule] (l,u ∈N)

[a1, ...,am[,not am+1, ...,not an]].

#external a. Indicates streaming input

#volatile t : N Indicates time-decay rules

achieves this by extending the ASP language to deal with emerging and
expiring knowledge, and to reason with time-decaying logic programs. In
Table 9.1, the part of oClingo’s ASP syntax for stream reasoning relevant
to the scientific model, discussed in Section 9.2, is shown.

9.2 use case : accessibility of road segments

ASP provides stream reasoning capabilities in a purely declarative fashion.
In this section, we present a use case that can illustrate the power of ASP
well in case of stream reasoning and processing.

Forecasting traffic information over a network of road segments makes
drivers and travelers aware of potential problems and hazards and even-
tually can reduce accidents. In this section, we consider the problem of
determining the accessibility of a particular road segment/location in a
specific area (e.g London, UK). We consider available data from various
sources, namely i) the traffic conditions on major arterial roads, ii) the
weather conditions being received from various stations within the area,
and iii) twitter status updates from users, specific to the geo-location and
using some particular keywords or hashtags for filtering.

These sources provide data streams, i.e., data tuples sent to the desti-
nation continuously. To build an application that can constantly update
the accessibility status of different road segments, we need to be able to
process and reason data streams produced by the sources, based on some
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intelligent aggregation and reasoning over the knowledge being received.
As an example, in the worst case scenario, the program could infer that
the location is very inaccessible if all three streams report that it is difficult
to enter or exit the area (e.g. slow traffic due to an accident; a snow bliz-
zard hindering travel). When information from data streams is lacking or
contradictory, the program would need to combine available knowledge
in a qualitative ranking, in order to decide a suitable accessibility rating to
inform potential travelers. Contextual information or user preferences can
also be used to guide the final results. The possibility of having multiple
possible solutions supported by subsets of the available input streams can
be also desirable when the qualitative metrics do not lead to any actual
winning outcome.

As already mentioned, possible errors in modeling the domain or for-
mulating constraints and qualitative criteria for ranking, might result into
an unexpected output. In this case, domain experts or scientists might be
interested to trace that unexpected outcome back to the details of contribut-
ing data which is not a trivial task in ASP due to its declarative nature and
to the lack of tool for instance-driven model debugging.

9.3 representing use case in a logic program

To deal with these different aspects of the use case, described in Section
9.2, we declaratively encoded it in ASP. The logic program consists of two
primary processes: a) generating the search space of plausible answer set
solutions based on the input data streams, and b) infer answer sets rele-
vant only to the data streams by navigating and pruning the search space.
Grounding techniques for ASP generate a complete and defined search
space domain and the ASP solver explores and prunes the search space
(via heuristics) to find the desired solutions with some optimization and
simplification that can reduce the complexity of this phase.

The search space and the domain of interest have to be defined in a
closed-world setting. As an example, Listing 9.1 shows a few facts and a Search

space
generation

logical rule. Line 2 in Listing 9.1 indicates that there could be three types
of streams: weather updates, rss feeds and twitter status updates. Further-
more, the facts shown in line 3-4 report that the value of a weather status
is bounded to the keyword ‘snow’ and the value of a rss feed is bounded
to the keyword ‘accident’. This is how we can restrict the status keywords
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into a finite set, i.e., a closed-world. Line 6 shows a logical rule that consid-
ers all valid weather and rss feed status types to produce a twitter status
update.

Listing 9.1: Predicates showing facts and a logical rule

1 % FACTS

2 streamtype(weather; rss; twitter).

3 status(weather, snow).

4 status(rss, accident).

5 % Copies all valid weather and rss status types into tweets

6 status(tweet,X) :- status(S,X), streamtype(S).

Based on this given facts and the logical rule, the grounding of ASP
generates all possible valid twitter status updates. Listing 9.2 shows the
grounding of Listing 9.1. This is how we can limit the search space and
then, all possible combinations of valid predicates are generated.

Listing 9.2: Grounding of Listing 9.1

1 status(tweet,accident).

2 status(tweet,snow).

Up until this point, we have not referred to any data streams yet. SoLimiting
search
space

far we have defined permutations of all possible solutions that the pro-
gram can output. In most cases, this space can be very large and most
likely contain many solutions those are not relevant. To limit answer sets
to relevant solutions, logical constraints are applied which help pruning
portions of the search space. With input data streams, we use constraints
in this way to ensure that data streams elements correspond to solutions
within the search space. A binding is performed by encoding rules that es-
sentially state that valid solutions from the program should only be those
that relate to data that has been recently streamed.

Through the combination of search space generation and elimination
via constraint based reasoning, the logic program based on ASP can es-
sentially aggregate the information from three streams: twitter, rss and
weather update, as discussed in Section 9.2, to determine the accessibility
of a particular road segment in a given settings.
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P1

Computing Processing Elements
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Figure 9.1: Representation of a logical rule based on Workflow Provenance Model

9.4 model characteristics

The proposed inference-based framework is applied over the aforesaid sci-
entific model based on the decision tree, discussed in Section 7.2. The
framework facilitates the decision tree to select the best suited inference-
based method that could be applied over the scientific model. To accom-
plish that, the decision making process takes a few characteristics of the
model into consideration and then, decide accordingly. In this section,
we briefly discuss the key characteristics of the aforesaid scientific model
and also compare these characteristics with the other scientific model, dis-
cussed in Chapter 8.

In Section 9.3, we describe the basic principle of encoding the use case
into a logic program. The logic program, written in ASP, constitutes the
scientific model that determines accessibility of road segments in a partic-
ular area. Answer Set Programming has no native support to collect data Model

developing
platform

provenance either at design or at run time of the model. Therefore, based
on the discussion in Section 1.3, we can classify the model as the one which
is developed in a provenance-unaware platform.

The aforesaid scientific model is comprised of many logical rules. A log-
ical rule, R, has two parts: head and body, as shown in Table 9.1. If the
predicates in the body are satisfied then the predicate in the head of the
rule can be inferred. Each logical rule in an ASP is represented as an ac-
tivity in the data-driven workflow of the logic program. As described in
Section 1.3.2, activities are also referred to as computing processing ele-
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ments during the execution of the model. According to the definition in
Section 3.1, a computing processing element has views/constants as input
and produces another view as an output. In case of a logic program, pred-Semantics

of
Activities
& Views

icates in both head and body of the rule are represented as views in the
workflow of the logic program. Therefore, each predicate is represented by
a single view unlike the scientific model, discussed in Chapter 8, where a
view consists of multiple data tuples/products. Furthermore, the way ac-
tivities are executed also differs in this case compared to the model, used
in case study I. In case study I (Chapter 8), the model is comprised of
many activities that are triggered independently during the model execu-
tion. However, in this case, the entire search space is generated at once
and at each logical clock tick, the search space is pruned via constraints
to derive answer sets. Therefore, rules/activities in the model involved in
case study II are triggered at once at each logical clock tick.

Figure 9.1 shows the resulting workflow provenance of a logical rule,
R, defined in Table 9.1. In Figure 9.1, the rule is represented as a com-Example

puting processing element P1, which has a number of body predicates
(views) such as a1, ...,am as input and produces a head predicate (view)
h as the output. Moreover, some of the body predicates am+1, ...,an are
connected to their corresponding processing elements not which produce
intermediate results, represented as views. These intermediate views are
also connected to the computing processing element P1 as input.

As already discussed in Section 3.1, nodes in a workflow have differ-
ent properties and the proposed inference-based framework can infer fine-
grained data provenance by facilitating these properties. One importantType of

activities property of these activities/processing elements is the input-output ratio
which refers to the ratio of number of contributing input tuples/predi-
cates producing output tuples/predicates to number of produced output
tuples/predicates. The computing processing element P1, representing the
logical rule R, has constant input-output ratio of ‘many to one’, since there
exist multiple input predicates (multiple views) which derive the output
predicate (a view). In a logic program, there could be processing elements
with variable input-output ratio as well. In Appendix A.3.4, an example with
variable ratio processing elements is described in detail.

These activities of the scientific model compute over data streams whichType of
input data come from three different sources such as twitter, rss and weather update.

Based on the available data at a particular point in time the model deter-
mines the accessibility rating of road segments. Therefore, this model is
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Table 9.2: Differences between Case study I and Case study II

Characteristic Case Study I Case Study II

Language Procedural Declarative

(Python) (Answer Set Programming)

Structure Flow-based Predicates-based

Input Data Offline Streaming

Activities Independent trigger interval All activities trigger at a

time

Results Deterministic Non-deterministic

executed based on data streams. The scientific model, used in case study I
(see Chapter 8), takes offline (non-stream) data as input data products.

The ASP solver oClingo is used to reason over input data streams. Dur-
ing the reasoning process, oClingo assigns a logical timestamp to each data
product. Then, it executes all computing processing elements at once, as
already mentioned before. This is a major difference with the model de- System

dynamicsveloped using a flow-oriented structure like the one discussed in Chapter
8. Output data products produced by the model is also assigned with the
same logical timestamp indicating that these are valid outputs at that time
point. Therefore, in this case, there is no processing delay which refers to
the amount of time required to process input data products, due to the
nature of oClingo execution. Moreover, sampling interval, referring to the
time between the arrival of two successive input data products, also has
no influence over the execution since the complete workflow is executed
at a time. Therefore, this model differs from the one described in Chapter
8, which is influenced by system dynamics during its execution.

Another major distinguishing feature between these two models is their
ability to derive multiple answer sets/results. The scientific model involved Non-

monotonic
reasoning

in case study I always provides exactly one answer for each operation.
However, the scientific model, discussed in this case study, is developed
using ASP and can derive multiple results at a single point in time which
is achieved through non-monotonicity and the use of Negation As Failure
(NAF).
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Table 9.2 summarizes the aforesaid differences between two case studies.
In case study I (Chapter 8), we have discussed mechanisms of applying
the inference-based framework over a model, developed in a procedural
language, to infer fine-grained data provenance. In this chapter, we extend
the scope of inference-based framework by applying it over a model de-
veloped in a declarative fashion which shows the wide applicability of the
inference-based framework.

9.5 overview : applying inference-based framework

The characteristics of the scientific model determining accessibility rating
of road segments are discussed in Section 9.4. As explained in Section 9.4,
the scientific model has been developed in a provenance-unaware platform,
using Answer Set Programming (ASP). Therefore, we apply the workflow
provenance inference method (Chapter 3), to extract workflow provenance
of the model. While the basic principle and the workflow provenance
model remain the same as discussed in Chapter 3, the mechanism of ex-
tracting workflow provenance has to be adjusted and extended to deal
with an ASP program. In this case, workflow provenance is extracted based
on the complete search space generated by grounding techniques of ASP.
Grounding binds the given facts to the appropriate parameters of a predi-
cate and generates all possible combinations of valid predicates.

The workflow provenance of the given logic program represents data
dependencies between predicates through logical rules/activities of the
complete search space. At a particular point in time, depending on re-
cently received elements of data streams (input data products), only a few
predicates satisfy logical rules which infer answer sets (output data prod-
ucts). The sub-graph consisting of these satisfying predicates and their
corresponding rules can explain the derivation history of a particular an-
swer set which is referred to as fine-grained data provenance. Therefore,
fine-grained data provenance is inferred by facilitating the workflow prove-
nance graph and available data products. Fine-grained data provenance
inference phase is only executed when scientists request provenance for a
particular output data product.

Next, we describe both workflow provenance inference method and fine-
grained data provenance inference method which are applied over the
aforesaid scientific model developed in ASP. To have a quantitative analysis
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of the framework in terms of accuracy, execution time and storage costs, we
also collect fine-grained data provenance at run time of the model, which is
referred to as explicit provenance method. We realize explicit provenance
method by extending the logic program to encode the provenance informa-
tion explicitly as predicates. The details of explicit provenance collection
method in the context of a logic program is given in Appendix A.3.

9.6 workflow provenance inference

The inference of the workflow provenance is based on static analysis of a
logic program. The oClingo tool explicates the search space where all pos-
sible instances of logical rules and constraints are explicated. The work-
flow provenance inference method analyzes the grounding of the logic
program and clusters the rules based on their types. Based on these clus-
ters a workflow provenance graph can be inferred consisting of different
types of nodes as discussed in Section 3.1.

A cluster of rules can be derived from the information provided by the
grounding of the logic program. As already mentioned, grounding of the
logic program is the explication of the search space, which cannot be lim-
ited due to the usage of volatile predicates, i.e., elements of data streams. In
the grounding, logical rules and constraints containing non-volatile pred-
icates are not represented but only the result of the logical rule since it is
static. However, the volatile part of logical rules and constraints remain as
rules in the grounding. In the following, we give an example of clustering
rules and constraints contained in the grounding and discuss the method
of extracting the workflow provenance graph.

Listing 9.3: Example of logical rules

1 riskvalue(rss, high, LOCATION) :- rss(STATUSTYPE, LOCATION, SEVERITY

, TIME), negative(STATUSTYPE), SEVERITY > 1.

2 riskvalue(rss, low, LOCATION) :- roadsegments(LOCATION), not

riskvalue(rss, high, LOCATION).

Listing 9.3 shows two logical rules mentioned in the ASP program of the
model. These rules infer the riskvalue associated with a road segment of a Example

particular LOCATION based on a rss data product/tuple. The risk values are
categorized as high and low. The rule mentioned in line 1 indicates that if
the SEVERITY of a negative STATUSTYPE such as accident, brokencar, roadwork
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Figure 9.2: Initial workflow provenance graphs before clustering based on Listing
9.4

is greater than 1 then the rule infers that the riskvalue of that particular
LOCATION is high. Please note that the keywords like accident of negative
status types are defined as facts within the logic program. The other rule
mentioned in line 2 indicates that if the model cannot infer the riskvalue

of a particular LOCATION as high, the model infers the riskvalue as low by
default.

Listing 9.4: Examples of the grounding of logical rules shown in Listing 9.3

1 riskvalue(rss,high,sThree):-rss(accident,sThree,2,4).

2 riskvalue(rss,high,sThree):-rss(brokencar,sThree,2,4).

3 riskvalue(rss,high,sThree):-rss(roadwork,sThree,2,4).

4 riskvalue(rss,low,sThree):-not riskvalue(rss,high,sThree).

The grounding of a logic program having the aforesaid rules produces
logical rules shown in Listing 9.4. The first three rules infer the riskvalue

as high of a road segment in LOCATION sThree at logical timestamp 4 due to
the appropriate rss predicates, valid at the same logical time point (see Line
1-3 in Listing 9.4). The rule mentioned in line 4 infers that the riskvalue of
sThree is low by default if the model fails to infer the riskvalue as high for
the same location. As already mentioned, the grounding does not contain
any non volatile predicates.
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Figure 9.3: Workflow provenance graph after clustering based on Listing 9.4

Each of these rules contained in Listing 9.4 is transformed into a sepa-
rate workflow provenance graph that exhibits causality between head and
body predicates of a rule. Figure 9.2 shows four different initial workflow
provenance graphs before clustering them. As already discussed, these
provenance graphs do not contain any views representing a non-volatile
predicate like negative(accident).

Next, we apply the clustering mechanism based on types of rules. Figure
9.2 shows that provenance graphs for line 1, 2 and 3 in Listing 9.4 has the
same predicate as output. As we have mentioned in Section 9.4, in case of a
logic program, each predicate is represented by a single view. Since prove-
nance graphs in line 1, 2 and 3 have the same output predicate, they must
be grouped together into a single cluster to represent the output predicate
by a single view. However, this grouping requires to split the correspond-
ing logical rule into two activities/processing elements. We introduce an
union activity to realize the aforesaid grouping operation. The other ac-
tivity then projects/propagates appropriate predicates based on available
input data products at a particular point in time. The left part of Figure 9.3
shows this clustering process. We extend this single cluster by unifying the
provenance graph for line 4, shown in Figure 9.2. After this clustering, we
get the intended workflow provenance graph, shown in Figure 9.3. From
this figure, one can observe that a negated predicate is represented by intro-
ducing a not processing element in the workflow provenance graph. This
not processing element has a variable input-output ratio and therefore it
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requires special attention during fine-grained provenance inference phase
which is discussed in the next section.

9.7 fine-grained data provenance inference

Fine-grained provenance inference facilitates the generated workflow prove-
nance of a given model, i.e., a logic program, and the available input
and output data products, i.e., input and output predicates in the answer
set. In previous chapters, we discussed several inference-based methods
to infer fine-grained data provenance (see Chapter 4, 5 and 6). Among
this inference-based methods, the multi-step probabilistic provenance inference,
presented in Chapter 6, can infer fine-grained data provenance for multi-
ple processing steps, i.e., a complete workflow. There are multiple rules
in the logic program which is involved in this case and these logical rules
are transformed into a series of processing steps. Therefore, we apply the
multi-step probabilistic provenance inference method, with a little adjustment
because of the model characteristics, to infer fine-grained data provenance.

Fine-grained provenance inference has three phases: i) documentation of
workflow provenance, ii) backward computation and iii) forward compu-
tation. In Section 9.6, we discuss the principle of extracting the workflow
provenance of a given logic program. The workflow provenance graph rep-
resents the entire search space of the model and it is facilitated by the the
next two phases of fine-grained provenance inference method. Please note
that a database, consisting of input and output predicates, has to be cre-
ated before executing the fine-grained provenance inference method. We
create a SQLite1 database that contains input and output data predicates as
data tuples in respective views/tables. The size of the database may vary
depending on the number of iterations the model is executed.

9.7.1 Backward Computation

This phase is executed once a scientist requests provenance of a predicate
from the available answer sets. This predicate is known as chosen predi-
cate/tuple. The logical timestamp associated with this predicate is referred
to as reference point. Based on this reference point, the backward computation
phase calculates the tuple boundary which refers to a time period with up-

1 Available at http://www.sqlite.org/
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per bound and lower bound. Predicates falling in this range are considered
as potential contributing input predicates producing the chosen output
predicate. Since the model has multiple processing steps, the framework
decides to apply the multi-step probabilistic provenance inference method to
calculate the tuple boundary based on the decision tree as shown in Figure
7.1. However, we have to also consider the model characteristics discussed
in Section 9.4 to calculate this boundary,. Based on this discussion, we can
see that the entire workflow of the scientific model, developed in ASP, is
executed at a time. Furthermore, the model is executed based on a logical
clock and has no processing delay. Therefore, unlike the multi-step prob-
abilistic provenance inference method, we need not consider accumulated
window size and processing delay in this case. This approach is a variant
of the multi-step probabilistic provenance inference method, that calculates
the tuple boundary using the equations given below.

upperBound = referencePoint

lowerBound = referencePoint−windowSize

The variant of the multi-step probabilistic provenance inference method
follows the same principle of the basic provenance inference method, dis-
cussed in Chapter 4, but can be applied over multiple processing steps
with non-persistent, intermediate result.

9.7.2 Forward Computation

After calculating the tuple boundary, the forward computation phase re-
constructs windows consisting of input data products/predicates that fall
in that boundary. Then, it starts traversing the workflow provenance graph
from those views representing input predicates and continues establish-
ing data dependent relationship between predicates/views for each logi-
cal rule/processing elements until it reaches the chosen output predicate.
It also retrieves appropriate data tuples which correspond to the input
predicates from the database.

9.7.2.1 Post-processing

The forward computation phase removes the branches of the workflow
provenance graph which are not directing towards the chosen predicate as
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a post-processing of the inferred fine-grained data provenance. It also han-
dles branches created for a negated body predicate as the one shown in line
4 in Listing 9.4. Figure 9.3 shows a not processing element that has been
created to handle a logical rule with a negated body predicate. During this
post-processing phase, if we reach at the view representing the predicate
riskvalue(rss, high, sThree) (see Figure 9.3) by traversing the work-
flow provenance graph from one of the top nodes (an input predicate), it is
confirmed that the model infers the existence of that particular riskvalue
predicate. Then, we do not traverse towards the branch with not process-
ing element rather we continue traversing to the next logical rule. The ‘not-
traversed’ branch staring with a not processing element (see Figure 9.3) is
removed from the graph. On the other hand, if the inference-based method
infers that there exists no such predicate riskvalue(rss, high, sThree),
it always includes the branch staring with the not processing element.

Furthermore, post-processing phase also handles variable ratio process-
ing elements. One of the variable ratio processing elements is a selection
processing element (see Appendix A.3.4). Depending on a particular condi-
tion, a selection processing element could either infer an output predicate or
not. Therefore, in the post-processing phase, the fine-grained provenance
inference method determines whether a selection processing element sat-
isfies the condition and thus, produces the output predicate. The other
branches having non-satisfiable selection processing elements are pruned
from the resulting fine-grained provenance graph.

Executing all these phases provides a fine-grained data provenance graph
that explains the derivation history of the chosen output predicate. The
fine-grained data provenance graph is a subset of the workflow provenance
graph which represents the complete search space of the model.

9.8 evaluation

The purpose of evaluating the inference-based framework over a scientific
model, developed using logic programming, is twofold. First, we would
like to evaluate the efficiency of the inference-based framework over the
explicit method of collecting provenance in a logic program, discussed
in Appendix A.3. Second, we would like to see whether the resulting fine-
grained data provenance graph is useful for debugging logic programs. We
present a comparative analysis between the explicit provenance collection
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method and the proposed inference-based method in terms of accuracy,
execution time and storage consumption to measure the efficiency of the
inference-based framework. Next, we present opinions from two experts in
the logic programming domain from Digital Enterprise Research Institute
(DERI), about the usefulness of the inferred fine-grained data provenance
graph for debugging logic programs.

To compare accuracy, execution time and storage costs between the ex-
plicit and the inference-based method, we execute the logic program which
is developed in ASP for 100, 200, 300 and 500 iterations with randomly
generated synthesized data representing twitter status, rss message and
weather updates.

9.8.1 Accuracy

The accuracy of the inferred fine-grained data provenance graph is mea-
sured against the explicit provenance graph which represents the ground
truth. The explicit provenance graph contains base facts/non-volatile pred-
icates, which are static and not considered in the inferred fine-grained data
provenance graph since the grounding mechanism does not explicate any
base facts/non-volatile predicates. Non-volatile predicates could be added
to the inferred provenance by extending the technique of static analysis of
the logic program. Due to lack of time, we have not done this step. There-
fore, we remove nodes representing non-volatile predicates/base facts from
the explicit provenance graph while comparing it to the corresponding in-
ferred fine-grained data provenance graph.

An inferred fine-grained data provenance graph for a particular output
predicate is considered to be accurate if the set of input predicates/input
data products of both explicit and inferred provenance graph are equiva-
lent. Mathematically, it can be referred to as accuracyi where i indicates
the i-th output predicate. If an inferred provenance graph is accurate, the
value of accuracyi is set to 1, otherwise 0. The average accuracy of the
inference-based method can be measured by computing the accuracy of
the inferred provenance graphs for all output predicates. The average ac-
curacy is calculated using the following equation assuming there are n
number of output predicates.

Average accuracy = (

∑n
i=1 accuracyi

n
× 100)%.
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Table 9.3: Comparison of Execution Time (in seconds)

No. of iterations Inference-based Method Explicit Method Ratio

100 18.2 58.1 1:3.2

200 57.4 166.9 1:2.9

300 115.1 329.6 1:2.9

500 280.3 out of memory -

In all test cases, the average accuracy of the inference-based method is
100% which indicates that all inferred provenance graphs match exactly
the corresponding explicit provenance graph. In this case, 100% accuracy
is expected. Since parameters like processing delay and sampling interval
do not influence the execution because of the model characteristics as dis-
cussed in Section 9.4, there are no possibilities to occur any error during
the inference phase and hence, we achieve 100% accuracy.

9.8.2 Execution Time

The execution time of a logic program depends on the number and com-
plexity of logical rules. The inference-based method infers fine-grained
data provenance by facilitating the workflow provenance graph which is
generated by the grounding of the logic program. However, the explicit
provenance collection method has to add extra logical rules, encoding
provenance information of the logic program. Therefore, the version of the
logic program executed by the explicit provenance method has a higher
number of logical rules then the original version of the logic program.
Therefore, the explicit provenance method incurs overhead in terms of ex-
ecution time due to the inclusion of extra logical rules. Table 9.3 shows a
comparison between these two methods. One can observe that the original
version of logic program executes around 3 times faster than the extended
version documenting provenance information explicitly. For the last test
case with 500 iterations, the extended logic program with extra logical
rules, encoding provenance information, cannot even finish the execution
because of a memory allocation error in oClingo.
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Table 9.4: Comparison of Storage Consumption (in KB)

No. of iterations Inference-based Method Explicit Method Ratio

100 14 181 1:13

200 23 347 1:15

300 29 533 1:18

500 57 out of memory -

Therefore, the execution of the logic program with extra logical rules
as used by the explicit provenance collection method is much slower and
in case of a higher number of iterations of the program, it is simply not
possible to document explicit provenance information.

9.8.3 Storage Space Consumption

The storage consumption is measured by comparing the size of the SQLite
databases that hold both input and output predicates of the logic program
in form of relational data tuples. Both the explicit provenance collection
method and the inference-based method, require to materialize all input
and output predicates into a database. Furthermore, the explicit prove-
nance method materializes all predicates, encoded with provenance infor-
mation, as tuples into the database. As a consequence, the storage overhead
of the explicit provenance method is dependent on the number of logical
rules for which provenance has to be encoded. Table 9.4 shows the disk
space consumed by these two methods.

From Table 9.4, it is evident that the explicit provenance method has
several magnitudes of storage overhead compared to the inference-based
method. The explicit provenance method takes at least 13 times more
storage than the inference-based method. In case of the inference-based
method, the storage consumption only depends on the number of input
and output predicates. It is independent on the window size and size of
intermediate results produced by processing elements within the logic pro-
gram. Therefore, the larger the window size and the higher the number of
processing elements, the more storage space can be saved by applying the
inference-based method.
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9.8.4 Ease of Debugging

In case of a logic program, the workflow provenance graph represents the
entire search space of the program. The workflow provenance graph iden-
tifies all possible data dependent relationship between predicates. The fine-
grained provenance graph is a subset of workflow provenance graph that
explains the derivation of a particular output predicate. Both provenance
graphs could be used for debugging an ASP program. In this regard, we
would like to highlight a point raised by one of the ASP domain experts
during our discussion with them.

It would be much easier to debug an ASP program if I (domain expert)
have the opportunity to look at the connections between predicates in
the search space. In this case, I (domain expert) could easily under-
stand how constraints influence the outcome of the program and this
knowledge could be facilitated to obtain correct answer sets.

Based on the raised point, we asked two ASP domain experts about how
provenance graphs could be useful for debugging an ASP program. Their
feedback is presented below. Please note that we are aware that this is not
a representative usability evaluation, but it gives an indication on the ap-
plicability of provenance graphs for debugging. Conducting an extensive
usability study could be a potential future work.

Feedback of ASP domain experts

The workflow and fine-grained provenance graphs provide useful insights
to both the logic programmer and the domain expert. The workflow prove-
nance graph captures the way data is related in the search space and fa-
cilitates the understanding of these connections. It also helps identifying
how constraints should be added or removed to reduce or to expand the
set of correct solutions. The fine-grained provenance graph is a subset of
the workflow provenance graph that explains the complete derivation his-
tory of a chosen fact in an answer set. It allows to verify the correctness of
the rules for modeling a particular domain. Fine-grained data provenance
provides the complete derivation history of an out-coming fact. Therefore,
this graph can be also useful to achieve reproducible results at the instance-
level. All these insights facilitate early-stage instance-driven debugging of
an ASP program.
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9.9 discussion

The inference-based framework, discussed in this thesis, is applied over
the scientific model which determines accessibility of road segments, de-
veloped in ASP. The evaluation of inference-based framework in the logic
programming domain shows that the framework can infer accurate prove-
nance information without any storage overhead faster than the method
of documenting provenance information explicitly. Furthermore, a brief
discussion with two ASP domain experts recommends that provenance
graphs should be considered as an additional tool for debugging ASP
programs in the initial modeling phase, when domain experts and ASP
programmers sit together to formulate a problem description. The mutual
understanding of how and why certain inputs generate a certain output
can produce a better formulation of a logic program faster.

However, there is a limitation of the inference-based framework in the
context of logic programming domain. One of the major challenges is to Negation

as failurerepresent Negation as Failure (NAF) logical rules in a provenance graph.
It is a non-monotonic inference rule that is used to derive a negation of a
fact from failure to derive that fact. In the current implementation of the
inference-based framework, we represent NAF as a NOT processing ele-
ment in the provenance graphs which cannot entirely reflect the semantics
of this rule. The power of NAF would need to be addressed if the goal is
to convey the semantics of the program which is beyond the scope of the
inference-based framework. The target of the inference-based framework is
to infer accurate provenance of scientific models at reduced storage costs
without annotating semantics of the domain. Domain experts, scientists,
developers of scientific models could then interpret provenance graphs by
facilitating their expertise on that domain or application.

In this connection, we acknowledge the benefits of ongoing work on ASP
debugging from a semantic perspective and the added value of IDE tools.
As a potential future work, we will be exploring how data provenance can
be embedded in those work for the next phases of ASP development.

9.10 summary

In this chapter, we presented a case study applying the proposed inference-
based framework over a logic program which is developed in Answer Set
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Programming (ASP), determines accessibility of road segment in a partic-
ular area. At the beginning, we presented a background of ASP briefly
along with the relevant ASP syntax to formulate logical rules. Then, we in-
troduced the use case of the model that facilitates twitter, rss and weather
update data streams to infer the current traffic condition of road segments.
Next, we identified the key characteristics of the model followed by the
discussion of differences between two case studies presented in this the-
sis. In this case, the scientific model is developed in ASP, a declarative
language, which is a provenance-unaware platform. Therefore, we applied
the workflow provenance inference method to extract a workflow prove-
nance graph automatically based on the grounding of the logic program.
Later, the workflow provenance graph is used during the fine-grained
provenance inference phase. Based on the input predicates at a particu-
lar point in time, we traversed through the workflow provenance graph
to infer the fine-grained data provenance graph which can explain the
derivation history of a particular output predicate of the model. After-
ward, we presented both quantitative and qualitative performance analysis
of inference-based framework on this use case. The quantitative analysis
shows that the inference-based framework can infer accurate provenance
information without any storage overhead faster than the method of docu-
menting provenance information explicitly. Furthermore, we arranged an
open-ended discussion session with two ASP domain experts mainly fo-
cusing on the usage of provenance graphs as a debugging tool in ASP. The
outcome of this discussion is promising and it suggests that provenance
graphs should be considered as an additional tool for debugging ASP pro-
grams.
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10
C O N C L U S I O N

P rovenance of data products is a widely-studied research topic, at-
tracting much attention from researchers now-a-days because of its sev-
eral applications. Workflow provenance explicates the relationship among
different activities within a scientific model. However, it cannot explain
the complete derivation history of a particular data product/tuple. Fine-
grained data provenance documents the relationship among contributing
input data products, activities and produced output data products. Both
workflow and fine-grained data provenance help scientists to validate their
scientific models as well as to trace a particular output data product back to
its contributing input data products. Therefore, a framework for managing
both workflow and fine-grained data provenance at reduced cost in terms
of time, training and storage consumption would be a timely solution for
scientists who want to manage data provenance for their models.

This thesis began with the goal of developing a generic, cost-efficient,
self-adaptable provenance management framework. We envisioned a frame- Goal of the

thesiswork that can automatically extract workflow provenance from a scientific
model built in a provenance-unaware platform, reducing effort of scientists
to define workflow provenance of the model manually or by facilitating a
specialized tool in terms of time and training. We also focused on the chal-
lenges of collecting fine-grained data provenance at reduced storage costs
under different execution environments. Finally, the envisioned framework
should be self-adaptable so that it can adjust the complete mechanism of
extracting provenance information based on the characteristics of a given
scientific model and underlying execution environment to always provide
highly accurate provenance information.
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In this chapter, we explain contributions of this thesis in the context of
the research questions posed in Section 1.4. Finally, we briefly describe
possible future work in this research direction.

10.1 contributions

This thesis centers around the primary research question which is given
below.

Primary Research Question (RQ): How to manage data provenance
with minimal user effort in terms of time and training and at reduced
storage consumption for different kinds of scientific models?

We divided the primary research questions into three research questions,
satisfying each of them would lead us towards accomplishing such a frame-
work managing data provenance. Next, we explain our contributions in the
light of these research questions.

10.1.1 Capturing Workflow Provenance Automatically

There are existing tools and techniques that can extract workflow prove-
nance of a scientific model [102, 84, 24, 116, 77]. These systems are referredProblem

to as provenance-aware platforms. Each of these tools has their own set of
programming constructs and operators that can define a set of activities
within a scientific model. These provenance-aware tools require scientists
to re-define the activities in their scientific model which might have been
developed in a provenance-unaware platform like high-level programming
languages, for extracting workflow provenance. Re-defining the activities
according to the constructs and operators of a provenance-aware platform
may not only take a considerable amount of time but also require extensive
training effort for scientists, adapting them to a particular platform. The
first research question, RQ 1, focuses on this challenge.

RQ 1: How to capture automatically the workflow provenance of a sci-
entific model developed in a provenance-unaware platform at reduced
cost in terms of time and training? (Chapter 3)

To address this challenge, we have proposed a novel technique, called
workflow provenance inference, to capture workflow provenance automati-
cally based on a given program which is used for actual processing of
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a scientific model. In this connection, we have introduced a workflow Solution

provenance model, representing activities and data products as well as
data-driven relationships between them as a graph. We have explained the
working principle of workflow provenance inference method in the con-
text of Python programs. First, an initial workflow provenance graph has
been generated explicating relationships between Python operations (activ-
ities) and variables (data products). The initial workflow provenance graph
might have control-flow based coordination between activities. Therefore,
we have defined a set of re-write rules and applied them over the initial
provenance graph to transform control dependencies into data dependen-
cies and this process achieves the workflow provenance graph.

We have evaluated the workflow provenance inference method over a di-
verse set of Python programs. Our evaluation has shown that the workflow Results

provenance inference method is capable of generating provenance graphs
for all 16 programs considered for the experiment. The accuracy of these
generated provenance graphs are checked manually by experts in Python
programming. For a complex program with more than 2 levels of nested
compound statements (e.g. conditional branching), the provenance graph
becomes very large and hence, it becomes difficult to check the accuracy
of that particular provenance graph manually. Therefore, we narrow down
the scope the experiment calculating accuracy by only considering pro-
grams with at most 2 levels of nested compound statements. There are 10

programs that satisfy the criterion and we have found that all 10 prove-
nance graphs generated for these programs are accurate.

The workflow provenance inference method can reduce the effort of sci-
entists in terms of time and training compared to other systems collecting
workflow provenance where scientists need to put a lot of effort to learn the
know-how of those systems. Therefore, the workflow provenance inference
method, discussed in Chapter 3, definitely provides a solution, answering
RQ 1.

10.1.2 Inferring Fine-grained Data Provenance

Workflow provenance explicates data-driven relationships between activ- Problem

ities within a scientific model. However, it cannot explain the derivation
of a particular data product, produced by executing that scientific model.
Fine-grained data provenance documents the derivation history of output
data products, allowing scientists to trace back to source data products
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or to reproduce the results. Existing annotation-based fine-grained prove-
nance collection systems [21, 131, 109, 28, 15, 60, 56] documents provenance
information explicitly which incurs a considerable amount of storage over-
head for maintaining provenance data. Especially, in case of applications
processing data streams, the storage consumed by provenance data can be
several orders of magnitude higher than the storage required by the collec-
tion of actual data products. Existing systems addressing fine-grained data
provenance for data streams [103, 129, 58, 108] maintain persistent prove-
nance information and thus, incur a significant storage overhead. The sec-
ond research question, RQ 2, highlights the challenge of maintaining data
provenance at reduced storage costs.

RQ 2: How to infer fine-grained data provenance under different
system dynamics at reduced cost in terms of storage consumption?
(Chapter 4, 5 and 6)

In this thesis, we have proposed fine-grained data provenance inference
methods that can satisfy any fine-grained provenance request for a par-
ticular output data product by facilitating workflow provenance of the re-
lated scientific model and timestamps attached to the data products. TheSolution

proposed inference-based methods do not maintain any persistent prove-
nance storage rather the inference-based methods infer data dependencies
between input and output data products by using timestamps attached
to data products as the key element. Therefore, inference-based methods
have less storage overhead, i.e., only keeping timestamps, to manage prove-
nance data compared to explicit provenance collection techniques.

We have proposed three inference-based methods that can infer fine-
grained data provenance as discussed in Chapter 4, 5 and 6. While the gen-
eral principle of the inference mechanism remains the same in each method
as discussed before, each inference-based method is suitable to handle a
particular situation which is referred to as system dynamics. System dy-
namics includes a set of parameters such as processing delay and sampling
interval. Processing delay refers to the amount of time required to execute
a processing element/activity. Sampling interval refers to the amount of
time between two successive arrivals of input data products in case of data
streams. The basic provenance inference method, discussed in Chapter 4, is
the most straightforward inference mechanism suitable for an environment
where activities have constant processing delays and data products arrive

264



10.1 contributions

at a constant sampling interval. In Chapter 5, we have presented the proba-
bilistic provenance inference method. This inference-based method is capable
of inferring fine-grained data provenance under variable processing delay
and variable sampling interval. Finally, we have proposed the multi-step
probabilistic provenance inference method in Chapter 6. This inference-based
method is an extension of the probabilistic provenance inference method
and can handle a processing chain with non-persistent intermediate views
under variable processing delays and variable sampling intervals.

We have evaluated each inference-based method in terms of storage con-
sumption and accuracy of provenance information using both real datasets
and simulations. Evaluation results reported in Chapter 4, 5 and 6 have Results

proved that inference-based methods take less storage space than explicit
provenance collection techniques. The ratio of the storage consumption be-
tween inference-based methods and explicit provenance collection method
depends on the actual processing and we refer to this ratio as storage gain.
The longer the processing chain of a scientific model and the bigger the in-
put datasets, the higher the storage gain by using inference-based methods.
Inference-based methods also achieve a higher magnitude of storage gain
when a particular input data product contributes several times during the
processing. This scenario is quite common in stream data processing with
windowing constructs. Our evaluation shows that in case of processing
data streams with sliding windows, the bigger the window size and the
larger the overlaps between windows, the higher the storage gain using
inference-based methods.

Furthermore, the inference-based methods infer around 90% accurate
provenance information in most test cases with variable processing delay
and variable sampling interval. If the processing delay remains constant or
data is processed offline, the inference-based methods infer 100% accurate
provenance. In sum, the proposed fine-grained provenance inference meth-
ods infer highly accurate provenance information at reduced storage costs
under different execution environments, satisfying RQ 2 of this thesis.

10.1.3 Incorporating Self-adaptability into the Framework

Existing provenance-aware systems are developed to address a particu- Problem

lar application or a particular settings. One of the goals in this thesis is
to achieve a generic framework to infer both workflow and fine-grained
data provenance. To accomplish this goal, we have proposed the work-
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flow provenance inference method that can capture workflow provenance
from a given program automatically. Furthermore, we have presented a
suite of fine-grained provenance inference methods which can build prove-
nance traces without maintaining explicit provenance data. Each inference-
based method we proposed, is suitable to handle a particular environment.
Therefore, it is important to be able to adapt the complete mechanism of
extracting provenance information by the framework itself based on the
characteristics of a given scientific model and underlying environment to
provide highly accurate provenance information always. The last research
question, RQ 3, introduces this challenge.

RQ 3: How to incorporate the self-adaptability into the framework
managing data provenance at reduced cost? (Chapter 7)

The characteristics of a scientific model should be examined first to
accomplish this challenge. A scientific model could be developed either
in a platform which collects provenance automatically or in a platform
that has no provenance support. The former is referred to as provenance-Solution

aware platform, while the later is referred to as provenance-unaware plat-
form. Depending on the model developing platform used, the framework can
decide whether to apply the workflow provenance inference method, i.e.,
for models developed in a provenance-unaware platform, or not. Next, a
fine-grained provenance request for a particular output data product can
be sent to the framework based on the availability of workflow provenance
and input data products. At this time, first, types of activities should be
taken into consideration. Activities that produce a fixed number of out-
put data products by processing a fixed number of input data products
at each execution are referred to as constant ratio activities such as project,
aggregate functions, cartesian product etc. Activities that do not hold this
condition are referred to as variable ratio activities such as select operation.
Fine-grained data provenance inference methods proposed in this thesis,
are directly applicable over constant ratio activities. To handle variable ra-
tio activities, a slight change during data processing should be adopted
by the framework. Furthermore, the proposed inference-based framework
should also consider types of input data products, i.e., either offline data (non-
streaming) or data streams, to apply a particular inference-based method.
Finally, system dynamics, describing parameters like processing delays and
sampling intervals, also play an important part to infer accurate prove-
nance by applying the most appropriate inference-based method.
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We have considered the aforesaid characteristics of a scientific model and
parameters describing execution environment to accomplish a self-adaptable
framework. We have introduced a decision tree which has been facilitated
to take the decision of which inference-based method should be executed
to infer both workflow provenance and fine-grained data provenance based
on the given model and current system dynamics. The outcome of this
decision making process allows the framework to be self-adaptable and
therefore, answers RQ 3.

10.1.4 Evaluating the Framework

We have evaluated the framework on the basis of two use cases as de-
scribed in Chapter 8 and 9. The first case study involves a scientific model Case I

for estimating the global water demand [127], discussed in Chapter 8, de-
veloped by the researchers from Utrecht University, The Netherlands. This
scientific model processes offline geospatial data, i.e., raster maps with
timestamps, collected from various sources and produces raster maps rep-
resenting global water demand from the year 1960-2000 at a monthly tem-
poral resolution. The model is developed in the Python programming lan-
guage. In this case study, first, we have applied the proposed workflow
provenance inference method to extract workflow provenance informa-
tion as discussed in Chapter 3. Later, we annotate appropriate nodes of
the workflow provenance graph with actual values of input and output
data products by applying the multi-step probabilistic provenance infer-
ence method. Our proposed framework has achieved 100% accurate fine-
grained data provenance without having any storage overhead. Further-
more, we have conducted an interview with scientists who developed this
model about the applicability of the framework. The scientists have ad-
mitted that both workflow and fine-grained provenance graphs are useful
for debugging purposes. Especially, fine-grained provenance graphs can
be used to easily identify the sources of an unexpected value in the output.
We have also built a prototype that demonstrates the complete framework
based on this use case [73].

The other case study is about estimating the degree of accessibility of a Case II

particular road segment, discussed in Chapter 9, developed by the scien-
tists from Digital Enterprise Research Institute (DERI), Ireland. The scien-
tific model realizing this use case, processes data streams collected from
various sources like twitter, rss feeds, weather update sites etc. and pro-
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duces the accessibility rating of road segments in a particular city. The
model is developed using a declarative language - Answer Set Program-
ming (ASP). The scientific model used in this use case has a few distinc-
tive features compared to the previous one. First, it processes data streams
whereas the model used in first case study processes offline data. Second,
this model is developed using ASP, a class of declarative languages while
the model used in first case study is developed using Python, a procedural
language. The difference in model developing platform introduces other
differences such as this scientific model allows non-deterministic results
unlike the model used in first use case.

Since ASP has no built-in provenance support, i.e., provenance-unaware
platform, we have applied the workflow provenance inference method
to extract the workflow provenance graph automatically. To address the
characteristics of a logic program, developed in ASP, we have introduced
new techniques to extract workflow provenance from the given program,
discussed in Chapter 9. Next, we have also inferred fine-grained data
provenance for a particular output data product/predicate by applying
the multi-step probabilistic provenance inference method. The proposed
framework has achieved 100% accurate provenance at less storage con-
sumption compared to explicit provenance collection methods. Further-
more, we have reported opinions of two ASP domain experts mainly fo-
cusing on the potential usage of provenance graphs as a debugging tool in
ASP. The outcome of this discussion is that both workflow and fine-grained
provenance graphs provide indication about the correctness of the model
as well as explain dependencies between data products/predicates.

These two case studies demonstrate the applicability and suitability of
the proposed inference-based framework managing data provenance in the
context of scientific data processing models. Developing such a framework
satisfies the primary research question presented in this thesis.

10.2 future work

The proposed framework is capable of inferring workflow provenance
from a given scientific model. Furthermore, given an output data product,
it can infer the set of input data products which contribute to produce that
particular output and thus, is capable of providing a fine-grained prove-
nance trace at reduced storage costs. We believe that the framework can
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serve as a solid platform for scientists who want to manage data prove-
nance of their scientific experiments. In this regard, we identify several
future work and research directions which could definitely improve the
framework and also broaden the application domain of the framework.

10.2.1 Improvement of Workflow Provenance Inference Methods

The proposed workflow provenance inference method is capable of han-
dling compound statements such as conditional branching (if-else), itera-
tive operations (for loop) etc. In case of an iterative operation like looping, Nested

iterationsthe workflow provenance inference method handles one looping opera-
tion at a time and infers its data dependencies. Sometimes, there could be
several levels of nested iterations. In this case, it is possible that data de-
pendencies in an inner loop could influence the outer loop characteristics.
Currently, the proposed workflow provenance inference method does not
address data dependencies occurring from such dependencies. Identifying
these influences requires in-depth analysis of different looping techniques
and possibly manual annotations. This is an interesting problem and we
consider this as future work to achieve a more complete workflow prove-
nance inference method.

Furthermore, the workflow provenance inference method does not ad-
dress any recursive operations at its current stage. The biggest challenge Recursive

operationsof handling recursive operations is to figure out the exact data-flow based
coordination between associated activities. Since same variables with dif-
ferent values are used at different stages of a recursive function, it is diffi-
cult to transform control-flow based coordination into data-flow based co-
ordination. Furthermore, it is also difficult to identify the end of execution
of a recursive operation without interpreting the values of participating
data products. For the aforesaid reasons, extracting workflow provenance
from a recursive operation is a challenging task. Furthermore, recursive
operations have also implications over the fine-grained data provenance
graph. Due to repetitive nature of processing, the resulting fine-grained
data provenance graph could become very large and complex to under-
stand. Addressing recursive operations in the proposed framework could
stimulate a new dimension of research in this domain.
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10.2.2 Assessment of Applicability of Fine-grained Data Provenance Meth-
ods

We have presented three methods to infer fine-grained data provenance in
this thesis. Each of them is suitable for a particular setting to infer highly
accurate fine-grained data provenance. These inference-based methods can
reduce storage overhead to maintain provenance data in a great deal. How-
ever, our evaluation has shown that sometimes these inference-based meth-
ods could provide inaccurate provenance. Therefore, a cost metrics com-
paring proposed inference-based methods and other explicit provenance
collection methods in terms of storage consumption and level of accuracy
of provenance information could become beneficial for users of the pro-
posed framework. In that case, users can get a hint about the efficiency
of inference-based methods and can also compare their performance be-
fore actually applying any particular method. In future, we would like to
complement the proposed framework by introducing such a cost metrics.

10.2.3 Extending Prototype of the Framework

We have developed a prototype1 demonstrating the proposed framework
[73]. The prototype integrates both workflow and fine-grained data prove-
nance inference methods, proposed in this thesis. Sometimes, a workflowSemantics

of
Provenance

Graphs

provenance graph could become very large depending on the program. It
is also true in case of a fine-grained data provenance graph. These prove-
nance graphs show data-driven relationships between activities with val-
ues of contributing data products. However, provenance graphs explicate
neither semantics of activities nor metadata pertaining to data products
like data source, data structure etc. The user has to interpret and under-
stand the meaning of different activities and contributing data products. In
this regard, if the user has expertise in that particular domain or if he/she
is working on that scientific model, interpretation of provenance graphs
could be easier. However, for a user working on other domains, interpre-
tation of provenance graphs without semantic information could become
a tedious job. Furthermore, including semantics into provenance graphs
could make provenance information more useful for debugging purposes.
In future, we would like to conduct further investigation in this direction.

1 Available at https://github.com/rezwan4438/ProvenanceCurious
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Currently, the prototype can only handle Python programs to capture
workflow provenance automatically. The core concept behind this infer-
ence method is to transform control dependencies between activities into
data dependencies. The general principle of transforming dependencies Addressing

more
languages

could be applied over other block-structured programming/scripting lan-
guages such as Java, PHP etc. Extending the implementation of workflow
provenance inference method to address these languages requires to inte-
grate appropriate grammar of a particular language so that the method
can parse a program written in that language and can capture the data
dependencies between activities. This could be a potential addition to the
current implementation of the proposed framework.

The current implementation of the framework facilitates a workflow
provenance model to explicate data dependencies between different ac-
tivities as a graph. We have kept the provision of annotating appropriate Provenance

representa-
tion

nodes of the workflow provenance graph with actual values in our prove-
nance model so that the derivation history of a particular data product can
be explained which we refer to as fine-grained data provenance graph. The
workflow provenance model can be easily extended to adopt the primitives
defined by PROV-DM [95]. PROV-DM is the conceptual data model that
forms a basis for the W3C provenance (PROV) specification. A quick com-
parison shows that the proposed workflow provenance model has nodes
similar to entities and activities as defined in PROV-DM. However, the work-
flow provenance model has no similar concept like agent type as discussed
in the PROV-DM specification. Since the aim of this thesis is to extract
provenance information efficiently, the provenance representation is not
the focus of this work. Extending the framework on the basis of PROV
specification to represent provenance graphs would surely increase the ap-
plicability and interoperability of the complete framework. Therefore, this
is one of the major tasks which will be addressed in the future.

10.2.4 Broadening the Application Domains of the Framework

Big data is the buzz word in these days. According to a recent article pub- Big data

lished by IBM2, 2.5 quintillion bytes (2500 petabytes) of data are created
everyday. This data comes from different sources: sensor data ranging
from a simple data tuple to high resolution satellite images, posts to so-

2 Available at http://www-01.ibm.com/software/data/bigdata/
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cial networking sites, meter readings of power consumption etc. In most
cases, big data is unstructured or semi-structured data. Since a majority of
existing provenance-aware systems are designed and developed over rela-
tional data in the backend, maintaining provenance in big data requires
novel techniques. Furthermore, storage overhead of provenance informa-
tion poses another challenge especially in big data case. It would be worth
investigating the big data provenance - big provenance problem as well as
to understand the opportunities of developing an inference-based prove-
nance management framework addressing use cases involving big data.

There are a few existing research in security and privacy domain thatSocial
networking facilitate provenance of data products as a basis to compute the trustwor-

thiness of a particular machine/node. Similar to this concept, provenance
could also play an important role to establish trust over other users in a
social networking platform. Everyday, we used to get a lot of posts from
other users in our personalized news feed. Some of them could be spam.
Provenance information associated with a post would easily identify the
source (user) of the spam (post) and therefore, we could mark that user
(source of the spam) as a less trustworthy. Since a particular post could be
shared a thousand times by different users, annotation-based provenance
would consume a lot of storage. Therefore, we would like to investigate
the chance of inferring provenance information in a social networking plat-
form.

Provenance information could be used for debugging the results of a
scientific data processing model as discussed in this thesis. It could be alsoSoftware

engineer-
ing

possible to apply the concept of program slicing [130], introduced in soft-
ware engineering domain, over a provenance graph to understand better
the impact of a particular data product. Furthermore, inclusion of seman-
tics of different activities and data products in a provenance graph could
make it more meaningful for users. Therefore, we could see the potential
of the proposed framework as a debugging tool complementing the clas-
sical debugging techniques of IDEs. More investigation in this direction is
one of the future work.

Furthermore, in a declarative settings such as Answer Set Programming
(ASP), there are a few existing work that explain the logic program from
a semantic perspective. In future, we will explore how the functionalities
of the proposed framework can be embedded in those work for the next
phases of ASP development.
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a.1 graph re-write rules in ruleml

We have encoded graph re-write rules, discussed in Chapter 3, in a rule
notation scheme, RuleML3. As an example, RuleML encoding of the graph
re-write rule GM 2.a (see Section 3.7) is given below.

V1 P1: = V2

IsIntermediate = true

V2

IsIntermediate = false

RHS

IsIntermediate = false

SP1 SP1

Rule GM 2.a: LHS

Computing

Processing 

Element

Source

Processing 

Element

ConstantView
Deleted Node

Node with updated property

Figure A.1: Graph re-write rule GM 2.a

RuleML encoding of re-write rule GM 2.a

1 <?xml version="1.0" encoding="UTF-8"?>

2 <RuleML xmlns="http://ruleml.org/spec"

xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

3 xsi:schemaLocation="http://ruleml.org/

spec http://ruleml.org/1.0/xsd/

datalog.xsd">

4

5 <Assert mapClosure="universal">

6 <!-- Rule GM 2.a: adding new edge -->

7 <Implies>

8 <if>

9 <!-- explicit ’And’ -->

10 <And>

11 <Atom>

12 <op>

13 <Rel>SourcePE</Rel>

14 </op>

15 <Var>id1</Var>

16 <Var>name1</Var>

17 <Var>line1</Var>

18 </Atom>

19 <Atom>

20 <op>

21 <Rel>ComputingPE</Rel>

22 </op>

23 <Var>id2</Var>

24 <Ind>=</Ind>

25 <Var>line2</Var>

26 </Atom>

27 <Atom>

28 <op>

29 <Rel>View</Rel>

30 </op>

31 <Var>id3</Var>

32 <Var>name3</Var>

3 Available at http://ruleml.org/
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33 <Ind>intermediate</Ind>

34 <Var>persistent3</Var>

35 <Var>line3</Var>

36 </Atom>

37 <Atom>

38 <op>

39 <Rel>View</Rel>

40 </op>

41 <Var>id4</Var>

42 <Var>name4</Var>

43 <Ind>non-intermediate</Ind>

44 <Var>persistent4</Var>

45 <Var>line4</Var>

46 </Atom>

47 <Atom>

48 <op>

49 <Rel>Edge</Rel>

50 </op>

51 <Var>id1</Var>

52 <Var>id3</Var>

53 </Atom>

54 <Atom>

55 <op>

56 <Rel>Edge</Rel>

57 </op>

58 <Var>id3</Var>

59 <Var>id2</Var>

60 </Atom>

61 <Atom>

62 <op>

63 <Rel>Edge</Rel>

64 </op>

65 <Var>id2</Var>

66 <Var>id4</Var>

67 </Atom>

68 </And>

69 </if>

70 <then>

71 <Atom>

72 <op>

73 <Rel>New_Edge</Rel>

74 </op>

75 <Var>id1</Var>

76 <Var>id4</Var>

77 </Atom>

78 </then>

79 </Implies>

80 <!-- Rule GM 2.a: removing V1 -->

81 <Implies>

82 <if>

83 <And>

84 <Atom>

85 <op>

86 <Rel>SourcePE</Rel>

87 </op>

88 <Var>id1</Var>

89 <Var>name1</Var>

90 <Var>line1</Var>

91 </Atom>

92 <Atom>

93 <op>

94 <Rel>ComputingPE</Rel>

95 </op>

96 <Var>id2</Var>

97 <Ind>=</Ind>

98 <Var>line2</Var>

99 </Atom>

100 <Atom>

101 <op>

102 <Rel>View</Rel>

103 </op>

104 <Var>id3</Var>

105 <Var>name3</Var>

106 <Ind>intermediate</Ind>

107 <Var>persistent3</Var>

108 <Var>line3</Var>

109 </Atom>

110 <Atom>

111 <op>

112 <Rel>View</Rel>

113 </op>

114 <Var>id4</Var>

115 <Var>name4</Var>

116 <Ind>non-intermediate</Ind>

117 <Var>persistent4</Var>

118 <Var>line4</Var>

119 </Atom>

120 <Atom>

121 <op>

122 <Rel>Edge</Rel>

123 </op>

124 <Var>id1</Var>

125 <Var>id3</Var>

126 </Atom>

127 <Atom>

128 <op>

129 <Rel>Edge</Rel>

130 </op>

131 <Var>id3</Var>

132 <Var>id2</Var>

133 </Atom>

134 <Atom>

135 <op>

136 <Rel>Edge</Rel>

137 </op>

138 <Var>id2</Var>

139 <Var>id4</Var>

140 </Atom>
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141 </And>

142 </if>

143 <then>

144 <Atom>

145 <op>

146 <Rel>Remove_Node</Rel>

147 </op>

148 <Var>id3</Var>

149 </Atom>

150 </then>

151 </Implies>

152 <!-- Rule GM 2.a: removing P1 -->

153 <Implies>

154 <if>

155 <And>

156 <Atom>

157 <op>

158 <Rel>SourcePE</Rel>

159 </op>

160 <Var>id1</Var>

161 <Var>name1</Var>

162 <Var>line1</Var>

163 </Atom>

164 <Atom>

165 <op>

166 <Rel>ComputingPE</Rel>

167 </op>

168 <Var>id2</Var>

169 <Ind>=</Ind>

170 <Var>line2</Var>

171 </Atom>

172 <Atom>

173 <op>

174 <Rel>View</Rel>

175 </op>

176 <Var>id3</Var>

177 <Var>name3</Var>

178 <Ind>intermediate</Ind>

179 <Var>persistent3</Var>

180 <Var>line3</Var>

181 </Atom>

182 <Atom>

183 <op>

184 <Rel>View</Rel>

185 </op>

186 <Var>id4</Var>

187 <Var>name4</Var>

188 <Ind>non-intermediate</Ind>

189 <Var>persistent4</Var>

190 <Var>line4</Var>

191 </Atom>

192 <Atom>

193 <op>

194 <Rel>Edge</Rel>

195 </op>

196 <Var>id1</Var>

197 <Var>id3</Var>

198 </Atom>

199 <Atom>

200 <op>

201 <Rel>Edge</Rel>

202 </op>

203 <Var>id3</Var>

204 <Var>id2</Var>

205 </Atom>

206 <Atom>

207 <op>

208 <Rel>Edge</Rel>

209 </op>

210 <Var>id2</Var>

211 <Var>id4</Var>

212 </Atom>

213 </And>

214 </if>

215 <then>

216 <Atom>

217 <op>

218 <Rel>Remove_Node</Rel>

219 </op>

220 <Var>id2</Var>

221 </Atom>

222 </then>

223 </Implies>

224 </Assert>

225 </RuleML>
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a.2 case study i : meeting minutes

In Chapter 8, we have presented a case study that demonstrates the via-
bility of the proposed inference-based framework over a scientific model
estimating global water demand [127], developed in Python programming
language. To perform this case study, we had several meetings with sci-
entists developing this scientific model. In this section, we provide a brief
transcript of these meetings.

a.2.1 Introductory Meeting

The scientific model estimating global water demand is developed by a
group of researchers working at the physical geography department, Fac-
ulty of Geosciences in the Utrecht University (UU). We had been intro-
duced to them by Bram (B. D. van der Waaij) who had been collaborating
with the group of researchers from Utrecht University in the context of the
GLOWASIS4 project. Table A.1 shows the date, time, place, duration and
participants of this meeting.

Table A.1: Introductory Meeting

Goal Discussion on the scope of collaboration

Date and Time January 13, 2012 at 10:30 hours

Place Utrecht University

Duration Around 90 minutes

Participants

Prof. dr. M. F. P. Bierkens, UU

Dr. L. P. H. van Beek, UU

Y. Wada, UU

B. D. van der Waaij, TNO Groningen

Dr. A. Wombacher, UT

M. R. Huq, UT

4 Available at http://glowasis.eu/
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Meeting Transcript

After the introduction, Andreas (Dr. A. Wombacher) gave a short presen-
tation about our research interests, focusing on data provenance. Andreas
explained the applications of fine-grained data provenance especially for
data intensive scientific models which includes debugging outputs of the
scientific model, i.e., tracing an erroneous value back to it’s source data. Af-
terward, Marc (Prof. dr. M. F. P. Bierkens) also explained their work briefly
followed by an open discussion on possible future collaborations between
Utrecht University and University of Twente. Researchers from Utrecht
University accepted the fact that the provenance information could possi-
bly help them to find out the origin of an abnormal/missing value. Later,
both parties agreed to collaborate with each other to perform a case study.
It was decided that Yoshi (Y. Wada) would provide related source code of
the scientific model alongside the input and output files (data products) of
the model and Rezwan (M. R. Huq) would develop a prototype based on
their work reported in [70, 71, 72] which could infer provenance informa-
tion based on the given scientific model and available data products.

a.2.2 Model and Data Collection

The next meeting was held to collect the source code (Python program)
of the scientific model estimating global water demand and the available
input and output data products. Table A.2 shows the date, time, place,
duration and participants of this meeting.

Table A.2: Model and Data Collection Meeting

Goal Collection of programs and original datasets

Date and Time February 06, 2012 at 11:00 hours

Place Utrecht University

Duration Around 60 minutes

Participants
Y. Wada, UU

M. R. Huq, UT
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Meeting Transcript

During this meeting, Yoshi (Y. Wada) provided the source code (Python
program) of the model and the available datasets used in this model. The
datasets consist of a collection of more than 3000 PCRaster5 files. Rezwan
(M. R. Huq) collected the Python program and datasets in an external hard
drive. Meanwhile, Rezwan asked a few questions to Yoshi about the struc-
ture of files, type of methods used in the program etc. Yoshi answered
these questions. Each file has 360× 720 values, representing a particular
type of data (e.g. crop factor, irrigated areas etc.), collected over the whole
world. Over this data, PCRaster operations (methods) are executed to com-
pute the desired value. Both parties agreed that they would sit together for
another meeting as soon as Rezwan had some initial results.

a.2.3 Initial Evaluation

This meeting was held to report the preliminary results, i.e., fine-grained
data provenance trace, followed by an evaluation of the results by the re-
searchers from Utrecht University. Table A.3 shows the date, time, place,
duration and participants of this meeting.

Table A.3: Initial Evaluation Meeting

Goal Reporting preliminary results and initial evaluation

Date and Time March 02, 2012 at 11:30 hours

Place Utrecht University

Duration Around 90 minutes

Participants

Dr. L. P. H. van Beek, UU

Y. Wada, UU

Dr. A. Wombacher, UT

M. R. Huq, UT

5 Available at http://pcraster.geo.uu.nl/
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Meeting Transcript

This session was divided in three parts: i) presentation part, ii) demonstra-
tion part and iii) evaluation part. During the presentation part, Rezwan
(M. R. Huq) provided an overview on data provenance and related terms.
Then, he talked about different types of PCRaster maps (input files) pro-
cessed by the scientific model. While some of these maps (e.g. map hold-
ing values of potential transpiration) are valid for a particular month in
a given year, some other maps (e.g. map holding values of irrigation effi-
ciency) are always valid irrespective of the year and the month. Rezwan
also provided a brief description of PCRaster operations which were used
in the model. All involved operations operate on a cell level and they have
constant input-output ratio. Later, Rezwan presented a workflow of the
model which had been developed manually by analyzing the source code,
showing data dependencies between different operations and maps (data
products).

Afterward, Rezwan gave a demonstration of the developed prototype
that can infer fine-grained data provenance of a selected output data prod-
uct by facilitating the given workflow of the model and available data prod-
ucts. The fine-grained data provenance graph shows contributing values
from input maps and associated operations which produce the selected
output data product. At this point, Rens (Dr. L. P. H. van Beek) asked a
question about whether intermediate results were stored persistently or
not. Rezwan replied that no intermediate results were stored but only in-
put and output data products were stored persistently. Furthermore, Rens
asked a question about whether the given workflow of the model could
be saved so that the user could avoid entering it again. Andreas (Dr. A.
Wombacher) replied that at this moment, it was not possible but it could
be a potential improvement of the prototype.

Eventually, the researchers were asked a few questions about the appli-
cations of a fine-grained data provenance graph. Both researchers from
Utrecht University saw the usefulness of a fine-grained data provenance
graph. Yoshi (Y. Wada) told that the fine-grained data provenance graph
could be very useful to trace a missing value to it’s source values. He also
mentioned that currently he had to do this manually which means that
he had to look for a contributing source value out of thousands of maps
which had been very time consuming. With this tool, he could complete
this task within a few seconds. Moreover, Rens pointed out that the work-
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flow of the scientific model could be also useful to validate the model or
to debug the scientific model itself (e.g. looking for code repetitions etc.).
However, the current version of the workflow had been prepared manually
and hence, it might not capture the complete semantics of the source code.

Based on this discussion, we pointed out a few possible improvements
that should be done in future. First, capturing the workflow of the scien-
tific model based on the given source code should be automated to avoid
manual interpretation which requires a lot of time and effort to under-
stand the program. Second, it would be nice to make the prototype more
user-friendly.

Since the initial evaluation on preliminary results was promising, both
parties agreed to have another round of evaluation once the suggested
improvements had been done.

a.2.4 Final Evaluation

This meeting was held to have a final evaluation on the prototype, inferring
fine-grained data provenance information. Table A.4 shows the date, time,
place, duration and participants of this meeting.

Table A.4: Final Evaluation Meeting

Goal Final evaluation on the developed tool

Date and Time July 03, 2012 at 14:00 hours

Place Utrecht University

Duration Around 120 minutes

Participants

Dr. L. P. H. van Beek, UU

Y. Wada, UU

Dr. A. Wombacher, UT

M. R. Huq, UT

Meeting Transcript

This meeting had begun with a presentation on the prototype that can ex-
tract the workflow provenance of the scientific model automatically and
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then can facilitate the workflow provenance and available data products
to infer fine-grained data provenance. Rezwan (M. R. Huq) presented the
approach briefly extracting the workflow provenance automatically from
the given source code (Python program). This approach requires the user
to provide a few information on each method signature on their first oc-
currence during the execution of the prototype. This information includes
whether a method reads/writes data from/into persistent storage. After-
ward, the prototype can extract a workflow provenance graph by analyz-
ing the source code of the program. Based on this workflow provenance
and available data products, the prototype can also infer fine-grained data
provenance graph.

Then, the developed prototype had been demonstrated. Both researchers
asked a few questions about the notations used in the fine-grained data
provenance graph. We replied to their questions by providing explanation
of these notations.

At last, the researchers were asked a few questions to evaluate the use-
ability of provenance graphs and the prototype. The first question was
about the application of a workflow provenance graph to debug a scien-
tific model. Researchers replied that since a workflow provenance graph
showed the complete data-flow of the program, it could be useful for code-
level debugging to some extent. Rens (L. P. H. van Beek) mentioned that
the workflow provenance graph could be also useful to compare different
versions of the same scientific model, expected to produce the same out-
put. Later, researchers were asked a question about the application of a
fine-grained data provenance graph. At this point, Yoshi (Y. Wada) added
that the fine-grained data provenance graph could be facilitated for er-
ror tracking and thus, it is more useful than the corresponding workflow
provenance graph. Researchers liked the developed prototype. However,
the prototype cannot handle recursive operations (e.g. neighborhood oper-
ations in PCRaster) at it’s current stage. This could be a potential extension
of the prototype in the future.

In general, researchers from Utrecht University recognized the useful-
ness of provenance graphs for debugging purposes. They also appreciated
the developed prototype that is capable of inferring provenance informa-
tion at reduced storage costs. They recommended to improve the user in-
terface and to add more functionalities such as saving a workflow, cus-
tomizing the result graph etc. We took their recommendations with high
importance and we will try to extend the prototype in future.
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a.3 case study ii : explicit provenance collection

method

In Chapter 9, we have described the mechanism to infer fine-grained data
provenance in the context of a logic program, developed in Answer Set
Programming (ASP). We have also documented provenance information
explicitly during execution of the program. This technique is referred to as
the explicit provenance collection method. The documented explicit prove-
nance serves as a ground truth to evaluate the accuracy of the fine-grained
data provenance inference method. In this section, we explain the mecha-
nism of collecting explicit provenance for the scientific model developed
in ASP as discussed in Chapter 9.

Explicit provenance collection method extends the given logic program
with additional logical rules to document fine-grained data provenance
explicitly, encoded as predicates. The augmentation of the logic program
with these additional logical rules can be done manually (as done here) or
can be automated, by parsing and analyzing the logic program. For the
purpose of investigating the usefulness of fine-grained provenance graphs
for debugging ASP programs and the pros and cons of explicit and in-
ferred provenance information, the way of augmenting the logic program
is not relevant.

We refer to the set of extra logical rules as explicit provenance rules. In
this section, we describe the construction of the provenance rules per class
of ASP rules, illustrate it with the aid of an example from the scenario and
provide the translation of the derived provenance predicate into a graphi-
cal representation based on the workflow provenance model, discussed in
Section 3.1. In particular, the different types of rule as indicated in Table
9.1 (see Section 9.1) are clustered into the following classes: i) logical rule,
ii) projection rule, iii) choice rule with constraints and iv) logical rule with
function.

a.3.1 Logical Rule

In general, a rule R in a logic program has two parts: head and body. If the
predicates in the body are satisfied then the predicate in the head of the
rule can be inferred. The structure of a logical rule is given below, which ex-
tends the version in Table 9.1 (see Section 9.1) by explicating the arguments
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of the involved predicates as a vector −−→argai = (args1,ai , . . . ,argsnai ,ai) re-
spectively:

h(−−→argh) : − a1(−−→arga1), ...,aM(−−→argaM)

[,not aM+1(
−−→argM+1), ...,not aN(

−−→argaN)].

The predicate h(−−→argh) in the aforesaid rule R constitutes the head of the
rule, where as the body of the rule R is comprised of the predicates a1,
... , aN. Each predicate in both head and body of the rule may have sev-
eral arguments represented by the vector −−→argh and −−→argai respectively. The
number of arguments for each predicate may vary.

a.3.1.1 Provenance Extension

To document explicit provenance, it is necessary to encode all predicates
and argument bindings of the logical rule R, deriving the predicate h, into
a provenance predicate. This is done by adding an extra logical rule for
rule R to the original logic program. The construction of the corresponding
provenance rule is quite straightforward. The provenance rule is a copy of
the logical rule R with a modified head predicate.

To formulate the head predicate of the provenance rule Rprov, the key-
word ‘Prov’ is added as a suffix to the name of the predicate in the head
part of rule R, thus hProv. The predicate hProv has the following argu-
ments:

1. arguments of the head predicate of the rule R: −−→argh

2. a user defined rule identifier: rule_id

3. for each positive predicate, ai in the body of the rule R:

a) name of the predicate: ai

b) arguments of the predicate ai:
−−→argai

Negated predicates are not encoded, since in a provenance graph enu-
merating negated predicates may explode the graph and the negation is
intended as Negation as Failure (NaF), which means that they have not
been observed. As an example, for the aforesaid rule R, we add the follow-
ing rule, RProv, which captures the explicit provenance information.
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hProv(−−→argh, rule_id,a1,−−→arga1 , . . . ,aM,−−→argaM)

: − a1(
−−→arga1), . . . ,aM(−−→argaM),

[not aM+1(
−−→argaM+1

), . . . ,not aN(
−−→argaN)].

a.3.1.2 Example

As an example, line 1 and 6 in Listing A.1 show two rules which are ex-
cerpted from the given logic program, realizing the use case as discussed
in Section 9.2. Both of these rules follow the aforesaid basic structure of a
logical rule and therefore, an extra provenance rule per logical rule will be
added to document provenance explicitly. Based on the provenance rule
formulation discussed above, line 4 and 9 in Listing A.1 show the prove-
nance rules.

Listing A.1: Logical rules with corresponding provenance rules

1 riskvalue(rss, high, LOCATION) :- rss(STATUSTYPE, LOCATION, SEVERITY

, TIME), negative(STATUSTYPE), SEVERITY>1.

2

3 % explicit provenance

4 riskvalueProv(rss, high, LOCATION, p5, rss, STATUSTYPE, LOCATION,

SEVERITY, TIME, negative, STATUSTYPE) :- rss(STATUSTYPE,

LOCATION, SEVERITY, TIME), negative(STATUSTYPE), SEVERITY>1.

5

6 riskvalue(rss, low, LOCATION) :- roadsegments(LOCATION), not

riskvalue(rss, high, LOCATION).

7

8 % explicit provenance

9 riskvalueProv(rss, low, LOCATION, p8, roadsegments, LOCATION, null,

null, null, null, null) :- roadsegments(LOCATION), not riskvalue

(rss, high, LOCATION).

The riskvalueProv predicate in line 4 and 9 have different arity. Since
a predicate in a logical program must always have the same arity, the re-
maining arguments of the predicate in line 9 are filled with null values.
While constructing the corresponding provenance graph, the null values
are being ignored.
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rss(brokencar,

sThree,2,4)

logical rule

p5

riskvalue(rss, 

high,sThree)

negative

(brokencar)

roadsegments

(sThree)

riskvalue(rss, 

low,sThree)

(Line 1) (Line 2)

logical rule

p8

Computing Processing Elements

Views

Figure A.2: Provenance graphs based on collected explicit provenance shown in
Listing A.2

a.3.1.3 Provenance Graph

To construct the provenance graph, we interpret the provenance predicates
as found in the answer set (output) of the logic program. Inverse to its
construction the head and the positive body predicates can be derived
knowing the arity of each predicate. The arity can either be derived from
the remaining content of the answer set or be specified in a configuration
file. The relation between input predicates and output predicate of the
processing element is derived from the fact that the head predicate of the
rule is defined by a single logical rule respectively. Therefore, a processing
element represents a logical rule.

Listing A.2: Predicates containing provenance information which are derived
based on provenance rules shown in Listing A.1

1 riskvalueProv(rss,high,sThree,p5,rss,brokencar,sThree,2,4,negative,

brokencar).

2 riskvalueProv(rss,low,sThree,p8,roadsegments,sThree,null,null,null,

null,null).

An example of provenance predicates as derived by the execution of the
logic program is given in Listing A.2. Based on these explicit provenance
predicates, corresponding provenance graphs are depicted in Figure A.2.

As described in Section 3.1, rectangles are used to represent comput-
ing processing elements (logical rules) and ellipses are used to represent
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views (predicates). The computing processing elements, shown in Figure
A.2, have a ‘many to one’ input-output ratio (see Section 3.1), indicating
that all contributing input views/predicates must contain a tuple to actu-
ally derive the output view/predicate.

a.3.2 Projection Rule

A projection rule is a logical rule where the body of the rule contains a
predicate with at least one argument, which is neither constrained by an-
other predicate nor used in the head predicate. The schema of a projection
rule is given below. Please note that for readability, we do not add the op-
tional negated predicates in the body of the rule as in the previous section.

h(−−→argh) : − a1(−−→arga1), . . . ,aM(−−→argaM).

where there exists an unbound argj,ak ∈
−−→argak

with ak ∈ {a1, . . . aM} and 1 6 j 6 nak

The predicate h in the aforesaid projection rule constitutes the head of
the rule, where as the body of the rule is comprised of the predicates a1,
... , aM. There must be at least one argument argj,ak which is unbounded,
i.e., not used by any other predicate in this rule. The determination of argu-
ment argj,ak in a logical rule can be done by simply checking all variables
for their occurrences in the head and the remaining body predicates. If
there is no match for an argument, the condition for a projection rule is
fulfilled.

a.3.2.1 Provenance Extension

Construction of the provenance rule follows the mechanism discussed in
Section A.3.1.1. Please note that if there is a predicate h in the answer set
for the head of the projection rule, there may be multiple instances of the
provenance predicate hProv - one for each instance of argument argj,ak .

hProv(−−→argh, rule_id,a1,−−→arga1 , . . . ,aM,−−→argaM)

: − a1(
−−→arga1), . . . ,aM(−−→argaM).
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support(low,

sThree,1

projection rule

p11

has_support

(sThree)

support(high,

sThree,1)

(Line 1)

Computing Processing Elements

Views

union

Intermediate

(Line 2)

Figure A.3: Provenance graph based on collected explicit provenance shown in
Listing A.4

a.3.2.2 Example

As an example, Listing A.3 line 1 shows an example of a projection rule
excerpted from the given logic program. The variables RISK and N are un-
bounded in this example. Listing A.3, line 4 shows the explicit provenance
rule related to the projection rule. Please be aware that the provenance
rules for projection and logical rules do not deviate with regard to the con-
struction of provenance rules, but they potentially deviate in the number
of instances in the answer set (output) and therefore in the provenance
graphs.

Listing A.3: A projection rule with it’s corresponding provenance rule

1 has_support(LOC) :- support(RISK,LOC,N).

2

3 % explicit provenance

4 has_supportProv(LOC,p11,support,RISK,LOC,N) :- support(RISK,LOC,N).
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a.3.2.3 Provenance Graph

Examples of the provenance predicates as derived by the execution of the
logic program are shown in Listing A.4. The resulting provenance graph is
depicted in Figure A.3.

Listing A.4: Predicates containing provenance information which are derived
based on provenance rule shown in Listing A.3

1 has_supportProv(sThree,p11,support,low,sThree,1).

2 has_supportProv(sThree,p11,support,high,sThree,1).

The processing element, representing a projection rule, differs from the
processing element, representing a logical rule (see Section A.3.1.3), by hav-
ing a single input only. Therefore, the input-output ratio of the projection
processing element is ‘one to one’, indicating that each tuple in the in-
put view are consumed into a single tuple in the output view. The union
processing element has an input-output ratio of ‘one to one’, thus a tuple
in an input view is directly transformed into a tuple in the output view
without correlating it with tuples from the remaining input views. As a
consequence, the union in Figure A.3 introduces two tuples in the interme-
diate view, which are then projected into a single tuple in the has_support

predicate.

a.3.3 Choice Rule with Constraints

A logic program might also include choice rules where a non-deterministic
choice in the head of the rule generates the search space and associated
constraints reduce the search space again. The structure of a choice rule is
given in Table 9.1 (see Section 9.1) which is a short-hand notation of the
following:

l{h(−−→arg1h), . . . ,h(
−−→argnh)}u : − a1(

−−→arga1), . . . aM(−−→argaM).

where l,u ∈N and the choice rule says that the ASP solver must choose
at least l number of predicates from the set of h(−−→arg1h), . . . ,h(

−−→argnh) pred-
icates but not more than u predicates. A choice rule is often associated
with constraints. Constraints are used to minimize the search space by ex-
cluding certain combinations of predicates that do not satisfy a particular
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condition. The basic structure of a constraint in relation with a choice rule
is given below:

: − h(−−→argih), b1(
−−→argb1), . . . bM(−−→argbM),not bM+1(

−−→argbM+1
).

It is important to understand that the core information is the h(−−→argih) pred-
icate and the negated predicate bM+1. Since the body of a constraint must
always evaluate to be false, it actually means that the negated predicate
bM+1 must always evaluate to be true if the predicate h(−−→argih) evaluates
to be true. This information must be added to the provenance graph.

a.3.3.1 Provenance Extension

To document explicit provenance for choice rules with constraints, we add
one explicit provenance rule for each predicate in the head of the corre-
sponding choice rule. The formulation of the provenance rule hProv fol-
lows the same procedure as discussed in Section A.3.1.3. However, the
body of the provenance rule contains now an additional predicate h(−−→argih)
to ensure that the right instances of the provenance predicate hProv are
available in the answer set (output). To represent the constraints, an addi-
tional provenance rule is added hProvConstr which contains arguments
including the arguments of the chosen head predicate h(−−→argih) as well as
the name and the arguments of the negated predicate bM+1. The body
of this additional rule consists out of the head predicate of the choice rule
h(−−→argih) and the negated predicate bM+1. It is to be noted that there can be
multiple instances of the hProvConstr provenance rules for a single head
predicate h(−−→argih). The formulation of the provenance rule for the afore-
mentioned choice rule with constraints is given below where i ∈ [1,n]:

hProv(−−→argih, rule_id,a1,−−→arga1 , ...,aM,−−→argaM)

: − h(−−→argih),a1(
−−→arga1), . . . ,aM(−−→argaM).

hProvConstr(−−→argih, rule_id,bM+1,−−→argbM+1
)

: − h(−−→argih),bM+1(
−−→argbM+1

).

a.3.3.2 Example

Listing A.5, line 1 and 2 show a choice rule with constraint from the
use case. Please be aware that the enumeration of all choices is done by
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Figure A.4: Provenance graph based on collected explicit provenance shown in
Listing A.6

providing the domain of variable RISK which is given by the predicate
accessibilityrisk(RISK). For the provenance rules in line 5 and 6 of List-
ing A.5, the enumeration of all possible arguments of choicerisk can also
be avoided by using variables RISK and LOC. Please note that the answer set
may contain multiple instances of the choiceriskProvConstr constraint -
one for each constraint related to the choice rule.

Listing A.5: A choice rule with constraints and it’s corresponding provenance rule

1 1{choicerisk(RISK,LOC): accessibilityrisk(RISK)}1:- roadsegments(LOC

), has_support(LOC).

2 :-choicerisk(RISK,LOC),not aux(RISK,LOC).

3

4 % explicit provenance

5 choiceriskProv(RISK, LOC, p13, accessibilityrisk, RISK, roadsegments

, LOC, has_support, LOC) :- choicerisk(RISK,LOC), roadsegments(

LOC), has_support(LOC).

6 choiceriskProvConstr(RISK, LOC, p13, aux, RISK, LOC) :- choicerisk(

RISK,LOC), aux(RISK,LOC).

a.3.3.3 Provenance Graph

Examples of the provenance predicates as derived by the execution of the
logic program are given in Listing A.6 and the resulting provenance graph
is depicted in Figure A.4. The logical rule processing element has been ex-
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plained in Section A.3.1.3. The constraint processing element is similar to
the logical rule processing element having a ‘many to one’ input-output
ratio and therefore they provide actually the same semantics. We use any-
way different names in the provenance graph to increase the readability
for the user, thus, ease the mapping back to the source code.

Listing A.6: Predicates containing provenance information which are derived
based on provenance rules shown in Listing A.5

1 choiceriskProv(low,sThree,p13,accessibilityrisk,low,roadsegments,

sThree,has_support,sThree).

2 choiceriskProvConstr(low,sThree,p13,aux,low,sThree).

a.3.4 Logical Rule with Function

In logic programming languages, there exist a few basic built-in support
for operations on data products such as numerical functions #count, #min,
#max etc. A logical rule facilitating a built-in function has the following
form:

h(−−→argh,CMP) : − a1(
−−→arga1), . . . ,aM(−−→argaM),

CMP = #function{aM+1(
−−→argaM+1

), . . . ,aN(
−−→argaN)}.

The difference between a basic logical rule, (see Section A.3.1) and a
logical rule with a function is that in a logical rule with function there
is one extra argument in the head of the rule, i.e., CMP, which value is
calculated using #function over a set of predicates aM+1, . . . ,aN.

a.3.4.1 Provenance Extension

A logical rule with function is executed in two steps: first, #function is ap-
plied over the set of predicates aM+1, . . . aN and second, the entire logical
rule is executed. Since in the first step a set of predicates is used, a repre-
sentation of the set as arguments in the provenance predicate results in an
arbitrary number of arguments. Therefore, the provenance rule is split into
two pieces. The first one addresses the entire logical rule, which is formu-
lated following the same procedure discussed in Section A.3.1.1. However,
the head of this provenance rule, hProv, does not contain the predicates
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used by the function, i.e. aM+1, . . . ,aN, as it’s arguments. The structure of
the first provenance rule is given below:

hProv(−−→argh,CMP, rule_id,a1,−−→arga1 , . . . ,aM,−−→argaM)

: − a1(
−−→arga1), . . . ,aM(−−→argaM),

CMP = #function{aM+1(
−−→argaM+1

)}.

The second provenance rule addresses the set of predicates used to
evaluate the function, where one predicate is created for each element
of the set to capture explicit provenance information. The head predicate
hProv#function of this provenance rule is named after the original rule ap-
pended with the key word ‘Prov’ and as the suffix the name of the function,
#function. Adding the name of the function in the predicate encodes the
type of the function used and therefore gives an indication on how to trans-
late this information into a provenance graph later on. The head predicate
hProv#function of this rule also contains the predicates aM+1, . . . ,aN
used as input to the function. The body of the rule is formulated following
the procedure discussed in Section A.3.1.1. Furthermore, it contains one
extra predicate which is the head of the original rule ensuring that the ex-
act relationship is maintained between predicates once the rule is inferred.
Finally, the body of the rule contains the predicates used inside the func-
tion, but does not apply the function to these predicates. The structure of
the rule is given below:

hProv#function(−−→argh,CMP, rule_id,a1,−−→arga1 , . . . ,
aM,−−→argaM ,aM+1,−−→argaM+1

, . . . ,aN,−−→argaN)
: − h(−−→argh,CMP),a1(

−−→arga1), . . .
aM(−−→argaM),aM+1(

−−→argaM+1
), . . . ,aN(

−−→argaN).

a.3.4.2 Example

Listing A.7, line 1 shows a logical rule with the numerical function #count

taken from the original logic program. Based on the procedure to formu-
late provenance rules discussed above, Listing A.7, lines 4 and 5 show the
extended program containing the provenance rules. Please note that the
answer set may contain multiple instances of the supportProvCount predi-
cate - one for each predicate used for evaluating the function #count.
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Listing A.7: A logical rule with #count function and it’s corresponding prove-
nance rules

1 support(RISK, LOCATION, N) :- accessibilityrisk(RISK), roadsegments(

LOCATION), N=#count{riskvalue(STREAMTYPE, RISK, LOCATION):

streamtype(STREAMTYPE)}, N>0.

2

3 % explicit provenance

4 supportProv(RISK, LOCATION, N, p10, accessibilityrisk, RISK,

roadsegments, LOCATION) :- accessibilityrisk(RISK), roadsegments

(LOCATION), N=#count{riskvalue(STREAMTYPE, RISK, LOCATION):

streamtype(STREAMTYPE)}, N>0.

5 supportProvCount(RISK, LOCATION, N, p10, accessibilityrisk, RISK,

roadsegments, LOCATION, riskvalue, STREAMTYPE, RISK, LOCATION,

streamtype, STREAMTYPE) :- support(RISK, LOCATION, N),

accessibilityrisk(RISK), roadsegments(LOCATION), riskvalue(

STREAMTYPE, RISK, LOCATION), streamtype(STREAMTYPE).

a.3.4.3 Provenance Graph

Examples of the provenance predicates as derived by the execution of the
logic program are given in Lisiting A.8. These provenance predicates are
represented as a provenance graph, depicted in Figure A.5.

Listing A.8: Predicates containing provenance information which are derived
based on provenance rules shown in Listing A.7

1 supportProv(low,sThree,1,p10,accessibilityrisk,low,roadsegments,

sThree).

2 supportProvCount(low,sThree,1,p10,riskvalue,rss,low,sThree).

The logical rule processing element has been explained in Section A.3.1.3.
The graph consists of using all related predicates for the evaluation of the
function as input for the count processing element, which counts the num-
ber of tuples accessible in input views and outputs this number in the
output view, i.e., the intermediate view. The processing element uses a
‘many to one’ input-output ratio. The Intermediate1 view in addition with
other predicates in the body of the logical rule are used as input for the
logical rule processing element resulting in the Intermediate2 output view.
The Intermediate2 view contains now implicitly the counted value, but it is
not explicated in the name of a view. To explicate this information, the con-
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Figure A.5: Provenance graphs based on collected explicit provenance shown in
Listing A.8

tent of the view must be analyzed by the select processing element. This
is a processing element which actually considers the value of the tuples
in a view to see whether it satisfies the given condition or not. Therefore
we characterize the select processing element as a variable ratio processing
element, while all others have been classified as constant ratio process-
ing elements. While the later one allows easy inference, a variable ratio
processing element requires a special inference, thus is less generic. The
output view of the select processing element explicates the count result in
the name of the view, thus corresponds to the head predicate of the logical
rule with a function.
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